enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. John M. Lee - Wikipedia

    en.wikipedia.org/wiki/John_M._Lee

    Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Vol. 218 (Second ed.). New York London: Springer-Verlag. ISBN 978-1-4419-9981-8. OCLC 808682771. Introduction to Smooth Manifolds, Springer-Verlag, Graduate Texts in Mathematics, 2002, 2nd edition 2012 [6] Fredholm Operators and Einstein Metrics on Conformally Compact Manifolds.

  3. Template:Lee Introduction to Smooth Manifolds - Wikipedia

    en.wikipedia.org/wiki/Template:Lee_Introduction...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  4. Lee Hwa Chung theorem - Wikipedia

    en.wikipedia.org/wiki/Lee_Hwa_Chung_theorem

    Lee, John M., Introduction to Smooth Manifolds, Springer-Verlag, New York (2003) ISBN 0-387-95495-3.Graduate-level textbook on smooth manifolds. Hwa-Chung, Lee, "The Universal Integral Invariants of Hamiltonian Systems and Application to the Theory of Canonical Transformations", Proceedings of the Royal Society of Edinburgh.

  5. Topological manifold - Wikipedia

    en.wikipedia.org/wiki/Topological_manifold

    Foundational Essays on Topological Manifolds. Smoothings, and Triangulations (PDF). Princeton: Princeton University Press. ISBN 0-691-08191-3. Lee, John M. (2000). Introduction to Topological Manifolds. Graduate Texts in Mathematics 202. New York: Springer. ISBN 0-387-98759-2.

  6. Time dependent vector field - Wikipedia

    en.wikipedia.org/wiki/Time_dependent_vector_field

    Download as PDF; Printable version; ... A time dependent vector field on a manifold M is a map from an open subset ... Lee, John M., Introduction to Smooth Manifolds, ...

  7. Lie group action - Wikipedia

    en.wikipedia.org/wiki/Lie_group_action

    Michele Audin, Torus actions on symplectic manifolds, Birkhauser, 2004 John Lee, Introduction to smooth manifolds , chapter 9, ISBN 978-1-4419-9981-8 Frank Warner, Foundations of differentiable manifolds and Lie groups , chapter 3, ISBN 978-0-387-90894-6

  8. AOL Mail - AOL Help

    help.aol.com/products/aol-webmail

    Get answers to your AOL Mail, login, Desktop Gold, AOL app, password and subscription questions. Find the support options to contact customer care by email, chat, or phone number.

  9. Congruence (manifolds) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(manifolds)

    Lee, John M. (2003). Introduction to smooth manifolds. New York: Springer. ISBN 0-387-95448-1. A textbook on manifold theory. See also the same author's textbooks on topological manifolds (a lower level of structure) and Riemannian geometry (a higher level of structure).