Search results
Results from the WOW.Com Content Network
Deamination is the removal of an amino group from a molecule. [1] Enzymes that catalyse this reaction are called deaminases. In the human body, deamination takes place primarily in the liver; however, it can also occur in the kidney. In situations of excess protein intake, deamination is used to break down amino acids for energy.
Deamidation reactions have been conjectured to be one of the factors that limit the useful lifetime of proteins. [1]Deamidation proceeds much more quickly if the susceptible amino acid is followed by a small, flexible residue such as glycine whose low steric hindrance leaves the peptide group open for attack.
Oxidative deamination is a form of deamination that generates α-keto acids and other oxidized products from amine-containing compounds, and occurs primarily in the liver. [1] Oxidative deamination is stereospecific, meaning it contains different stereoisomers as reactants and products; this process is either catalyzed by L or D- amino acid ...
Oxidative deamination is the first step to breaking down the amino acids so that they can be converted to sugars. The process begins by removing the amino group of the amino acids. The amino group becomes ammonium as it is lost and later undergoes the urea cycle to become urea, in the liver. It is then released into the blood stream, where it ...
Transamination is a chemical reaction that transfers an amino group to a ketoacid to form new amino acids.This pathway is responsible for the deamination of most amino acids. This is one of the major degradation pathways which convert essential amino acids to non-essential amino acids (amino acids that can be synthesized de novo by the organism).
Examples of catabolic processes include glycolysis, the citric acid cycle, the breakdown of muscle protein in order to use amino acids as substrates for gluconeogenesis, the breakdown of fat in adipose tissue to fatty acids, and oxidative deamination of neurotransmitters by monoamine oxidase.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Monoamine oxidases catalyze the oxidative deamination of monoamines. In the first part of the reaction, cofactor FAD oxidizes the substrate yielding the corresponding imine which converts the cofactor into its reduced form FADH2. The imine is then non-enzymatically hydrolyzed to the corresponding ketone (or aldehyde) and ammonia.