Search results
Results from the WOW.Com Content Network
A second version of the central dogma is popular but incorrect. This is the simplistic DNA → RNA → protein pathway published by James Watson in the first edition of The Molecular Biology of the Gene (1965). Watson's version differs from Crick's because Watson describes a two-step (DNA → RNA and RNA → protein) process as the central ...
Comparing and aligning RNA, protein, and DNA sequences. Identification of promoters and finding genes from sequences related to DNA. Interpreting the expression-gene and micro-array data. Identifying the network (regulatory) of genes. Learning evolutionary relationships by constructing phylogenetic trees. Classifying and predicting protein ...
Structural bioinformatics is the branch of bioinformatics that is related to the analysis and prediction of the three-dimensional structure of biological macromolecules such as proteins, RNA, and DNA. It deals with generalizations about macromolecular 3D structures such as comparisons of overall folds and local motifs, principles of molecular ...
In accordance with the central dogma of molecular biology, RNA passes information between the DNA of a genome and the proteins expressed within an organism. [1] Therefore, from an evolutionary standpoint, a mutation within the DNA bases results in an alteration of the RNA transcripts, which in turn leads to a direct difference in phenotype.
GRN also play a central role in morphogenesis, the creation of body structures, which in turn is central to evolutionary developmental biology (evo-devo). The regulator can be DNA, RNA, protein or any combination of two or more of these three that form a complex, such as a specific sequence of DNA and a transcription factor to activate that ...
The primary structure of a biopolymer is the exact specification of its atomic composition and the chemical bonds connecting those atoms (including stereochemistry).For a typical unbranched, un-crosslinked biopolymer (such as a molecule of a typical intracellular protein, or of DNA or RNA), the primary structure is equivalent to specifying the sequence of its monomeric subunits, such as amino ...
Modifications to histone proteins and their DNA are classified as quaternary structure. Condensed chromatin, heterochromatin, prevents transcription of genes. In other words, transcription factors cannot access wound DNA-[6] This is in contrast to euchromatin, which is decondensed, and therefore, readily accessible to the transcriptional machinery.
DNA uses the deoxynucleotides C, G, A, and T, while RNA uses the ribonucleotides (which have an extra hydroxyl(OH) group on the pentose ring) C, G, A, and U. Modified bases are fairly common (such as with methyl groups on the base ring), as found in ribosomal RNA or transfer RNAs or for discriminating the new from old strands of DNA after ...