Ad
related to: algebraic geometry coneseducation.com has been visited by 100K+ users in the past month
It’s an amazing resource for teachers & homeschoolers - Teaching Mama
- Educational Songs
Explore catchy, kid-friendly tunes
to get your kids excited to learn.
- Worksheet Generator
Use our worksheet generator to make
your own personalized puzzles.
- Guided Lessons
Learn new concepts step-by-step
with colorful guided lessons.
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Educational Songs
Search results
Results from the WOW.Com Content Network
In algebraic geometry, a cone is a generalization of a vector bundle.Specifically, given a scheme X, the relative Spec = of a quasi-coherent graded O X-algebra R is called the cone or affine cone of R.
A cone is a convex cone if + belongs to , for any positive scalars , , and any , in . [5] [6] A cone is convex if and only if +.This concept is meaningful for any vector space that allows the concept of "positive" scalar, such as spaces over the rational, algebraic, or (more commonly) the real numbers.
In the case of lines, the cone extends infinitely far in both directions from the apex, in which case it is sometimes called a double cone. Either half of a double cone on one side of the apex is called a nappe. The axis of a cone is the straight line passing through the apex about which the base (and the whole cone) has a circular symmetry.
The normal cone's geometry can be further explored by looking at the fibers for various closed points of . Note that geometrically X {\displaystyle X} is the union of the x y {\displaystyle xy} -plane H {\displaystyle H} with the z {\displaystyle z} -axis L {\displaystyle L} , X = H ∪ L {\displaystyle X=H\cup L} so the points of interest are ...
The definition of the tangent cone can be extended to abstract algebraic varieties, and even to general Noetherian schemes. Let X be an algebraic variety, x a point of X, and (O X,x, m) be the local ring of X at x. Then the tangent cone to X at x is the spectrum of the associated graded ring of O X,x with respect to the m-adic filtration:
A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.
The cone over a closed interval I of the real line is a filled-in triangle (with one of the edges being I), otherwise known as a 2-simplex (see the final example). The cone over a polygon P is a pyramid with base P. The cone over a disk is the solid cone of classical geometry (hence the concept's name). The cone over a circle given by
A singular quadric surface, the cone over a smooth conic curve. If q can be written (after some linear change of coordinates) as a polynomial in a proper subset of the variables, then X is the projective cone over a lower-dimensional quadric. It is reasonable to focus attention on the case where X is not a cone.
Ad
related to: algebraic geometry coneseducation.com has been visited by 100K+ users in the past month
It’s an amazing resource for teachers & homeschoolers - Teaching Mama