Search results
Results from the WOW.Com Content Network
In computer science and information theory, a Huffman code is a particular type of optimal prefix code that is commonly used for lossless data compression.The process of finding or using such a code is Huffman coding, an algorithm developed by David A. Huffman while he was a Sc.D. student at MIT, and published in the 1952 paper "A Method for the Construction of Minimum-Redundancy Codes".
The normal Huffman coding algorithm assigns a variable length code to every symbol in the alphabet. More frequently used symbols will be assigned a shorter code. For example, suppose we have the following non-canonical codebook: A = 11 B = 0 C = 101 D = 100 Here the letter A has been assigned 2 bits, B has 1
In computing, Deflate (stylized as DEFLATE, and also called Flate [1] [2]) is a lossless data compression file format that uses a combination of LZ77 and Huffman coding.It was designed by Phil Katz, for version 2 of his PKZIP archiving tool.
The Huffman coding algorithm takes as input the frequencies that the code words should have, and constructs a prefix code that minimizes the weighted average of the code word lengths. (This is closely related to minimizing the entropy.) This is a form of lossless data compression based on entropy encoding.
The package-merge algorithm is an O(nL)-time algorithm for finding an optimal length-limited Huffman code for a given distribution on a given alphabet of size n, where no code word is longer than L. It is a greedy algorithm , and a generalization of Huffman's original algorithm .
Information Theory, Inference, and Learning Algorithms, by David MacKay (2003), gives an introduction to Shannon theory and data compression, including the Huffman coding and arithmetic coding. Source Coding, by T. Wiegand and H. Schwarz (2011).
Adaptive Huffman coding (also called Dynamic Huffman coding) is an adaptive coding technique based on Huffman coding. It permits building the code as the symbols are being transmitted, having no initial knowledge of source distribution, that allows one-pass encoding and adaptation to changing conditions in data.
Huffman came up with the algorithm when a professor offered students to either take the traditional final exam, or improve a leading algorithm for data compression. [5] Huffman reportedly was more proud of his work "The Synthesis of Sequential Switching Circuits," [1] which was the topic of his 1953 MIT thesis (an abridged version of which was ...