Search results
Results from the WOW.Com Content Network
The 18th-century Swiss mathematician Leonhard Euler (1707–1783) is among the most prolific and successful mathematicians in the history of the field.His seminal work had a profound impact in numerous areas of mathematics and he is widely credited for introducing and popularizing modern notation and terminology.
He gave the current definition of the constant , the base of the natural logarithm, now known as Euler's number. [10] Euler made contributions to applied mathematics and engineering, such as his study of ships which helped navigation, his three volumes on optics contributed to the design of microscopes and telescopes, and he studied the bending ...
In mathematics and physics, many topics are named in honor of Swiss mathematician Leonhard Euler (1707–1783), who made many important discoveries and innovations. Many of these items named after Euler include their own unique function, equation, formula, identity, number (single or sequence), or other mathematical entity.
Euler's identity is a direct result of Euler's formula, published in his monumental 1748 work of mathematical analysis, Introductio in analysin infinitorum, [16] but it is questionable whether the particular concept of linking five fundamental constants in a compact form can be attributed to Euler himself, as he may never have expressed it.
Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.
In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...
Euler's first axiom or law (law of balance of linear momentum or balance of forces) states that in an inertial frame the time rate of change of linear momentum p of an arbitrary portion of a continuous body is equal to the total applied force F acting on that portion, and it is expressed as
Mechanica (Latin: Mechanica sive motus scientia analytice exposita; 1736) is a two-volume work published by mathematician Leonhard Euler which describes analytically the mathematics governing movement. Euler both developed the techniques of analysis and applied them to numerous problems in mechanics, [1] notably in later publications the ...