enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transition-rate matrix - Wikipedia

    en.wikipedia.org/wiki/Transition-rate_matrix

    In probability theory, a transition-rate matrix (also known as a Q-matrix, [1] intensity matrix, [2] or infinitesimal generator matrix [3]) is an array of numbers describing the instantaneous rate at which a continuous-time Markov chain transitions between states.

  3. Matrix analytic method - Wikipedia

    en.wikipedia.org/wiki/Matrix_analytic_method

    [1] [2] Such models are often described as M/G/1 type Markov chains because they can describe transitions in an M/G/1 queue. [3] [4] The method is a more complicated version of the matrix geometric method and is the classical solution method for M/G/1 chains. [5]

  4. Stochastic matrix - Wikipedia

    en.wikipedia.org/wiki/Stochastic_matrix

    A substochastic matrix is a real square matrix whose row sums are all ; In the same vein, one may define a probability vector as a vector whose elements are nonnegative real numbers which sum to 1. Thus, each row of a right stochastic matrix (or column of a left stochastic matrix) is a probability vector.

  5. Balance equation - Wikipedia

    en.wikipedia.org/wiki/Balance_equation

    For a continuous time Markov chain (CTMC) with transition rate matrix, if can be found such that for every pair of states and π i q i j = π j q j i {\displaystyle \pi _{i}q_{ij}=\pi _{j}q_{ji}} holds, then by summing over j {\displaystyle j} , the global balance equations are satisfied and π {\displaystyle \pi } is the stationary ...

  6. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    The PageRank of a webpage as used by Google is defined by a Markov chain. [82] [83] [84] It is the probability to be at page in the stationary distribution on the following Markov chain on all (known) webpages.

  7. Additive Markov chain - Wikipedia

    en.wikipedia.org/wiki/Additive_Markov_chain

    In probability theory, an additive Markov chain is a Markov chain with an additive conditional probability function. Here the process is a discrete-time Markov chain of order m and the transition probability to a state at the next time is a sum of functions, each depending on the next state and one of the m previous states.

  8. Continuous-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Continuous-time_Markov_chain

    Another discrete-time process that may be derived from a continuous-time Markov chain is a δ-skeleton—the (discrete-time) Markov chain formed by observing X(t) at intervals of δ units of time. The random variables X (0), X (δ), X (2δ), ... give the sequence of states visited by the δ-skeleton.

  9. Feller process - Wikipedia

    en.wikipedia.org/wiki/Feller_process

    Every adapted right continuous Feller process on a filtered probability space (,, ()) satisfies the strong Markov property with respect to the filtration (+), i.e., for each (+)-stopping time, conditioned on the event {<}, we have that for each , + is independent of + given .