enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Initial and terminal objects - Wikipedia

    en.wikipedia.org/wiki/Initial_and_terminal_objects

    For example, the initial object in any concrete category with free objects will be the free object generated by the empty set (since the free functor, being left adjoint to the forgetful functor to Set, preserves colimits). Initial and terminal objects may also be characterized in terms of universal properties and adjoint functors.

  3. Limit (category theory) - Wikipedia

    en.wikipedia.org/wiki/Limit_(category_theory)

    A cone to an object X is just a morphism with codomain X. A morphism f : Y → X is a limit of the diagram X if and only if f is an isomorphism. More generally, if J is any category with an initial object i, then any diagram of shape J has a limit, namely any object isomorphic to F(i). Such an isomorphism uniquely determines a universal cone to F.

  4. List object - Wikipedia

    en.wikipedia.org/wiki/List_object

    In a category with a terminal object 1, binary coproducts (denoted by +), and binary products (denoted by ×), a list object over A can be defined as the initial algebra of the endofunctor that acts on objects by X ↦ 1 + (A × X) and on arrows by f ↦ [id 1,〈id A, f〉].

  5. Category of rings - Wikipedia

    en.wikipedia.org/wiki/Category_of_rings

    Examples of limits and colimits in Ring include: The ring of integers Z is an initial object in Ring. The zero ring is a terminal object in Ring. The product in Ring is given by the direct product of rings. This is just the cartesian product of the underlying sets with addition and multiplication defined component-wise.

  6. Category of topological spaces - Wikipedia

    en.wikipedia.org/wiki/Category_of_topological_spaces

    Examples of limits and colimits in Top include: The empty set (considered as a topological space) is the initial object of Top; any singleton topological space is a terminal object. There are thus no zero objects in Top. The product in Top is given by the product topology on the Cartesian product.

  7. Glossary of category theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_category_theory

    terminal 1. An object A is terminal (also called final) if there is exactly one morphism from each object to A; e.g., singletons in Set. It is the dual of an initial object. 2. An object A in an ∞-category C is terminal if ⁡ (,) is contractible for every object B in C. thick subcategory

  8. Category of small categories - Wikipedia

    en.wikipedia.org/wiki/Category_of_small_categories

    The initial object of Cat is the empty category 0, which is the category of no objects and no morphisms. [1] The terminal object is the terminal category or trivial category 1 with a single object and morphism. [2] The category Cat is itself a large category, and therefore not an object of itself.

  9. Preadditive category - Wikipedia

    en.wikipedia.org/wiki/Preadditive_category

    Note that because a nullary biproduct will be both terminal (a nullary product) and initial (a nullary coproduct), it will in fact be a zero object. Indeed, the term "zero object" originated in the study of preadditive categories like Ab , where the zero object is the zero group .