Search results
Results from the WOW.Com Content Network
This article lists the genera of the Archaea. The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) [1] and National Center for Biotechnology Information (NCBI). [2] However, in the List provided below, GTDB has precedence unless otherwise noted.
Archaea were initially classified as bacteria, receiving the name archaebacteria (/ ˌ ɑːr k i b æ k ˈ t ɪər i ə /, in the Archaebacteria kingdom), but this term has fallen out of use. [5] Archaeal cells have unique properties separating them from Bacteria and Eukaryota. Archaea are further divided into multiple recognized phyla.
Pages in category "Archaea genera" The following 116 pages are in this category, out of 116 total. This list may not reflect recent changes. ...
Human microbiota are microorganisms (bacteria, viruses, fungi and archaea) found in a specific environment. They can be found in the stomach, intestines, skin, genitals and other parts of the body. [1] Various body parts have diverse microorganisms.
The presence of these ether linkages in Archaea adds to their ability to withstand extreme temperatures and highly acidic conditions, but many archaea live in mild environments. Halophiles (organisms that thrive in highly salty environments) and hyperthermophiles (organisms that thrive in extremely hot environments) are examples of Archaea. [1]
For example, bacterial taxonomists name ... Bacteria (prokaryotes, together with Archaea) share many common features. These commonalities include the lack of a ...
Haloarchaea (halophilic archaea, halophilic archaebacteria, halobacteria) [1] are a class of prokaryotic archaea under the phylum Euryarchaeota, [2] found in water saturated or nearly saturated with salt. 'Halobacteria' are now recognized as archaea rather than bacteria and are one of the largest groups or archaea.
Halobacterium (common abbreviation Hbt.) is a genus in the family Halobacteriaceae. [1]The genus Halobacterium ("salt" or "ocean bacterium") consists of several species of Archaea with an aerobic metabolism which requires an environment with a high concentration of salt; many of their proteins will not function in low-salt environments.