Search results
Results from the WOW.Com Content Network
In mathematics, de Moivre's formula (also known as de Moivre's theorem and de Moivre's identity) states that for any real number x and integer n it is the case that ( + ) = + , where i is the imaginary unit (i 2 = −1).
Published in 1738 by Woodfall and running for 258 pages, the second edition of de Moivre's book introduced the concept of normal distributions as approximations to binomial distributions. In effect de Moivre proved a special case of the central limit theorem. Sometimes his result is called the theorem of de Moivre–Laplace.
The title comes from the contemporary use of the phrase "doctrine of chances" to mean the theory of probability, which had been introduced via the title of a book by Abraham de Moivre. Contemporary reprints of the essay carry a more specific and significant title: A Method of Calculating the Exact Probability of All Conclusions Founded on ...
According to the de Moivre–Laplace theorem, as n grows large, the shape of the discrete distribution converges to the continuous Gaussian curve of the normal distribution. In probability theory , the de Moivre–Laplace theorem , which is a special case of the central limit theorem , states that the normal distribution may be used as an ...
De Moivre's most notable achievement in probability was the discovery of the first instance of central limit theorem, by which he was able to approximate the binomial distribution with the normal distribution. [16]
Abraham de Moivre was born in Vitry-le-François in Champagne on 26 May 1667. His father, Daniel de Moivre, was a surgeon who believed in the value of education. Though Abraham de Moivre's parents were Protestant, he first attended Christian Brothers' Catholic school in Vitry, which was unusually tolerant given religious tensions in France at the time.
de Moivre's illustration of his piecewise linear approximation. De Moivre's law first appeared in his 1725 Annuities upon Lives, the earliest known example of an actuarial textbook. [6] Despite the name now given to it, de Moivre himself did not consider his law (he called it a "hypothesis") to be a true description of the pattern of human ...
Thébault's theorem ; Theorem of de Moivre–Laplace (probability theory) Theorem of the cube (algebraic varieties) Theorem of the gnomon ; Theorem of three moments ; Theorem on friends and strangers (Ramsey theory) Thévenin's theorem (electrical circuits) Thompson transitivity theorem (finite groups)