enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Petrick's method - Wikipedia

    en.wikipedia.org/wiki/Petrick's_method

    In Boolean algebra, Petrick's method [1] (also known as Petrick function [2] or branch-and-bound method) is a technique described by Stanley R. Petrick (1931–2006) [3] [4] in 1956 [5] [6] for determining all minimum sum-of-products solutions from a prime implicant chart. [7]

  3. And–or tree - Wikipedia

    en.wikipedia.org/wiki/And–or_tree

    Given an initial problem P 0 and set of problem solving methods of the form: P if P 1 and … and P n. the associated and–or tree is a set of labelled nodes such that: The root of the tree is a node labelled by P 0. For every node N labelled by a problem or sub-problem P and for every method of the form P if P 1 and ... and P n, there exists ...

  4. Flowchart - Wikipedia

    en.wikipedia.org/wiki/Flowchart

    A flowchart can also be defined as a diagrammatic representation of an algorithm, a step-by-step approach to solving a task. The flowchart shows the steps as boxes of various kinds, and their order by connecting the boxes with arrows. This diagrammatic representation illustrates a solution model to a given problem.

  5. Algorithm - Wikipedia

    en.wikipedia.org/wiki/Algorithm

    Flowchart of using successive subtractions to find the greatest common divisor of number r and s. In mathematics and computer science, an algorithm (/ ˈ æ l ɡ ə r ɪ ð əm / ⓘ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. [1]

  6. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    In other words, any problem in EXPTIME is solvable by a deterministic Turing machine in O(2 p(n)) time, where p(n) is a polynomial function of n. A decision problem is EXPTIME-complete if it is in EXPTIME, and every problem in EXPTIME has a polynomial-time many-one reduction to it. A number of problems are known to be EXPTIME-complete.

  7. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    The algorithm continues until a removed node (thus the node with the lowest f value out of all fringe nodes) is a goal node. [b] The f value of that goal is then also the cost of the shortest path, since h at the goal is zero in an admissible heuristic. The algorithm described so far only gives the length of the shortest path.

  8. SAT solver - Wikipedia

    en.wikipedia.org/wiki/SAT_solver

    In computer science and formal methods, a SAT solver is a computer program which aims to solve the Boolean satisfiability problem.On input a formula over Boolean variables, such as "(x or y) and (x or not y)", a SAT solver outputs whether the formula is satisfiable, meaning that there are possible values of x and y which make the formula true, or unsatisfiable, meaning that there are no such ...

  9. ♯P-complete - Wikipedia

    en.wikipedia.org/wiki/%E2%99%AFP-complete

    #P-complete problems are at least as hard as NP-complete problems. [1] A polynomial-time algorithm for solving a #P-complete problem, if it existed, would solve the P versus NP problem by implying that P and NP are equal. No such algorithm is known, nor is a proof known that such an algorithm does not exist.