Search results
Results from the WOW.Com Content Network
Chemisorption is a kind of adsorption which involves a chemical reaction between the surface and the adsorbate. New chemical bonds are generated at the adsorbent surface. Examples include macroscopic phenomena that can be very obvious, like corrosion [clarification needed], and subtler effects associated with heterogeneous catalysis, where the catalyst and reactants are in different pha
In chemisorption, molecules are adsorbed on the surface by valence bonds and only form monolayer adsorption. A direct transition from physisorption to chemisorption has been observed by attaching a CO molecule to the tip of an atomic force microscope and measuring its interaction with a single iron atom. [12]
The second, a more direct evidence, examined and measured the films of liquid onto an adsorbent surface layer. He also noted that generally the attractive strength between the surface and the first layer of adsorbed substance is much greater than the strength between the first and second layer.
The key assumption used in deriving the BET equation that the successive heats of adsorption for all layers except the first are equal to the heat of condensation of the adsorbate. The Langmuir isotherm is usually better for chemisorption, and the BET isotherm works better for physisorption for non-microporous surfaces.
Structure of a teichoic acid repeat unit from Micrococcaceae Structure of the lipoteichoic acid polymer. Teichoic acids (cf. Greek τεῖχος, teīkhos, "wall", to be specific a fortification wall, as opposed to τοῖχος, toīkhos, a regular wall) [1] are bacterial copolymers [2] of glycerol phosphate or ribitol phosphate and carbohydrates linked via phosphodiester bonds.
Vapor-solid reactions: formation of an inactive surface layer and/or formation of a volatile compound that exits the reactor. [22] This results in a loss of surface area and/or catalyst material. Solid-state transformation : solid-state diffusion of catalyst support atoms to the surface followed by a reaction that forms an inactive phase.
The outermost layer of the gastrointestinal wall consists of several layers of connective tissue and is either of serosa (below the diaphragm) or adventitia above the diaphragm. [4] [1] [5] Regions of the gastrointestinal tract within the peritoneum (called Intraperitoneal) are covered with serosa. This structure consists of connective tissue ...
The apparent rigidity of the cell wall thus results from inflation of the cell contained within. This inflation is a result of the passive uptake of water. In plants, a secondary cell wall is a thicker additional layer of cellulose which increases wall rigidity. Additional layers may be formed by lignin in xylem cell walls, or suberin in cork ...