enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Eigenvalues and eigenvectors are often introduced to students in the context of linear algebra courses focused on matrices. [22] [23] Furthermore, linear transformations over a finite-dimensional vector space can be represented using matrices, [3] [4] which is especially common in numerical and computational applications. [24]

  3. Nonlinear eigenproblem - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_eigenproblem

    The Julia package NEP-PACK contains many implementations of various numerical methods for nonlinear eigenvalue problems, as well as many benchmark problems. [12] The review paper of Güttel & Tisseur [1] contains MATLAB code snippets implementing basic Newton-type methods and contour integration methods for nonlinear eigenproblems.

  4. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  5. Eigenvalue perturbation - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_perturbation

    In mathematics, an eigenvalue perturbation problem is that of finding the eigenvectors and eigenvalues of a system = that is perturbed from one with known eigenvectors and eigenvalues =. This is useful for studying how sensitive the original system's eigenvectors and eigenvalues x 0 i , λ 0 i , i = 1 , … n {\displaystyle x_{0i},\lambda _{0i ...

  6. Generalized eigenvector - Wikipedia

    en.wikipedia.org/wiki/Generalized_eigenvector

    For example, if has real-valued elements, then it may be necessary for the eigenvalues and the components of the eigenvectors to have complex values. [ 35 ] [ 36 ] [ 37 ] The set spanned by all generalized eigenvectors for a given λ {\displaystyle \lambda } forms the generalized eigenspace for λ {\displaystyle \lambda } .

  7. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    In power iteration, for example, the eigenvector is actually computed before the eigenvalue (which is typically computed by the Rayleigh quotient of the eigenvector). [11] In the QR algorithm for a Hermitian matrix (or any normal matrix), the orthonormal eigenvectors are obtained as a product of the Q matrices from the steps in the algorithm ...

  8. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    Let be the vector space spanned by the eigenvectors of which correspond to a negative eigenvalue and analogously for the positive eigenvalues. If a ∈ W s {\displaystyle a\in W^{s}} then lim t → ∞ x ( t ) = 0 {\displaystyle {\mbox{lim}}_{t\rightarrow \infty }x(t)=0} ; that is, the equilibrium point 0 is attractive to x ( t ) {\displaystyle ...

  9. QR algorithm - Wikipedia

    en.wikipedia.org/wiki/QR_algorithm

    In numerical linear algebra, the QR algorithm or QR iteration is an eigenvalue algorithm: that is, a procedure to calculate the eigenvalues and eigenvectors of a matrix.The QR algorithm was developed in the late 1950s by John G. F. Francis and by Vera N. Kublanovskaya, working independently.