Search results
Results from the WOW.Com Content Network
Hull speed can be calculated by the following formula: where is the length of the waterline in feet, and is the hull speed of the vessel in knots. If the length of waterline is given in metres and desired hull speed in knots, the coefficient is 2.43 kn·m −½.
In particular, any "displacement" or non-planing boat requires much greater power to accelerate beyond its hull speed, which is determined by the length of the waterline, and can be calculated using the formula: Vmax (in knots) = square root of LWL (in feet) x 1.34. The hull speed is the speed at which the wavelength of the bow wave stretches ...
For the International rule, the rating number is approximately equal to the sailing length of the hull. These boats have long overhangs which allow the waterline length to increase as the boat heels over. A displacement hull's maximum speed (the hull speed) is directly proportional to the square root of its waterline length. [2] The first ...
The displacement–length ratio (DLR or D/L ratio) is a calculation used to express how heavy a boat is relative to its waterline length. [1] DLR was first published in Taylor, David W. (1910). The Speed and Power of Ships: A Manual of Marine Propulsion. John Wiley & Sons. p. 99. [2]
Forward resistance comprises the types of drag that impede a sailboat's speed through water (or an ice boat's speed over the surface) include components of parasitic drag, consisting primarily of form drag, which arises because of the shape of the hull, and skin friction, which arises from the friction of the water (for boats) or air (for ice ...
A velocity prediction program (VPP) is a computer program which solves for the performance of a sailing yacht in various wind conditions by balancing hull and sail forces. VPPs are used by yacht designers, boat builders, model testers, sailors, sailmakers, also America's Cup teams, to predict the performance of a sailboat before it has been built or prior to major modifications.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The hull is now starting to climb its own bow wave, and resistance begins to increase at a very high rate. While it is possible to drive a displacement hull faster than a speed-length ratio of 1.34, it is prohibitively expensive to do so. Most large vessels operate at speed-length ratios well below that level, at speed-length ratios of under 1.0.