Search results
Results from the WOW.Com Content Network
Ionizing radiation produces fast moving particles which have the ability to damage DNA, and produce highly reactive free radicals known as reactive oxygen species (ROS). The production of ROS in cells radiated by LDIR (Low-Dose Ionizing Radiation) occur in two ways, by the radiolysis of water molecules or the promotion of nitric oxide synthesis ...
Radiolysis of intracellular water by ionizing radiation creates peroxides, which are relatively stable precursors to hydroxyl radicals. 60%–70% of cellular DNA damage is caused by hydroxyl radicals, [3] yet hydroxyl radicals are so reactive that they can only diffuse one or two molecular diameters before reacting with cellular components.
Illustration of a transversion: each of the 8 nucleotide changes between a purine and a pyrimidine (in red). The 4 other changes are transitions (in blue).. Transversion, in molecular biology, refers to a point mutation in DNA in which a single (two ring) purine (A or G) is changed for a (one ring) pyrimidine (T or C), or vice versa. [1]
It develops because radiation causes DNA mutations directly and indirectly. Direct effects are those caused by ionizing particles and rays themselves, while the indirect effects are those that are caused by free radicals, generated especially in water radiolysis and oxygen radiolysis.
DNA may be modified, either naturally or artificially, by a number of physical, chemical and biological agents, resulting in mutations. Hermann Muller found that "high temperatures" have the ability to mutate genes in the early 1920s, [2] and in 1927, demonstrated a causal link to mutation upon experimenting with an x-ray machine, noting phylogenetic changes when irradiating fruit flies with ...
A disease that is caused by a loss-of-function mutation is Gitelman syndrome and cystic fibrosis. [54] Gain-of-function mutations also called activating mutations, change the gene product such that its effect gets stronger (enhanced activation) or even is superseded by a different and abnormal function.
Quantum biology is the study of applications of quantum mechanics and theoretical chemistry to aspects of biology that cannot be accurately described by the classical laws of physics. [1] An understanding of fundamental quantum interactions is important because they determine the properties of the next level of organization in biological systems.
The transferred DNA (called T-DNA) is piloted to the plant cell nucleus by nuclear localization signals present in the Agrobacterium protein VirD2, which is covalently attached to the end of the T-DNA at the Right border (RB). Exactly how the T-DNA is integrated into the host plant genomic DNA is an active area of plant biology research.