enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The left-hand side is the time derivative of the momentum, and the right-hand side is the force, represented in terms of the potential energy. [ 9 ] : 737 Landau and Lifshitz argue that the Lagrangian formulation makes the conceptual content of classical mechanics more clear than starting with Newton's laws. [ 29 ]

  3. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    The total kinetic energy of a system depends on the inertial frame of reference: it is the sum of the total kinetic energy in a center of momentum frame and the kinetic energy the total mass would have if it were concentrated in the center of mass.

  4. Impulse (physics) - Wikipedia

    en.wikipedia.org/wiki/Impulse_(physics)

    F is the resultant force applied, t 1 and t 2 are times when the impulse begins and ends, respectively, m is the mass of the object, v 2 is the final velocity of the object at the end of the time interval, and; v 1 is the initial velocity of the object when the time interval begins. Impulse has the same units and dimensions (MLT −1) as momentum.

  5. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  6. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    If the net force F applied to a particle is constant, and is applied for a time interval Δt, the momentum of the particle changes by an amount =. In differential form, this is Newton's second law ; the rate of change of the momentum of a particle is equal to the instantaneous force F acting on it, [ 1 ] F = d p d t . {\displaystyle F={\frac ...

  7. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    where p i = momentum of particle i, F ij = force on particle i by particle j, and F E = resultant external force (due to any agent not part of system). Particle i does not exert a force on itself. Torque. Torque τ is also called moment of a force, because it is the rotational analogue to force: [8]

  8. Action (physics) - Wikipedia

    en.wikipedia.org/wiki/Action_(physics)

    In the simple case of a single particle moving with a constant velocity (thereby undergoing uniform linear motion), the action is the momentum of the particle times the distance it moves, added up along its path; equivalently, action is the difference between the particle's kinetic energy and its potential energy, times the duration for which ...

  9. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energymomentum_relation

    The energy and momentum of an object measured in two inertial frames in energymomentum space – the yellow frame measures E and p while the blue frame measures E ′ and p ′. The green arrow is the four-momentum P of an object with length proportional to its rest mass m 0.