Search results
Results from the WOW.Com Content Network
The statement of Newton's law used in the heat transfer literature puts into mathematics the idea that the rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings. For a temperature-independent heat transfer coefficient, the statement is:
A fundamental solution, also called a heat kernel, is a solution of the heat equation corresponding to the initial condition of an initial point source of heat at a known position. These can be used to find a general solution of the heat equation over certain domains; see, for instance, ( Evans 2010 ) for an introductory treatment.
Thermal conductivity, frequently represented by k, is a property that relates the rate of heat loss per unit area of a material to its rate of change of temperature. Essentially, it is a value that accounts for any property of the material that could change the way it conducts heat. [ 1 ]
The rate of heat flow is the amount of heat that is transferred per unit of time in some material, usually measured in watts (joules per second). Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm). Heat must not be confused with stored thermal energy, and moving a hot ...
The heat equation is an important partial differential equation that describes the distribution of heat (or temperature variation) in a given region over time. In some cases, exact solutions of the equation are available; [ 26 ] in other cases the equation must be solved numerically using computational methods such as DEM-based models for ...
The defining equation for thermal conductivity is =, where is the heat flux, is the thermal conductivity, and is the temperature gradient. This is known as Fourier's law for heat conduction. Although commonly expressed as a scalar , the most general form of thermal conductivity is a second-rank tensor .
This equation uses the overall heat transfer coefficient of an unfouled heat exchanger and the fouling resistance to calculate the overall heat transfer coefficient of a fouled heat exchanger. The equation takes into account that the perimeter of the heat exchanger is different on the hot and cold sides.
The equation relating thermal energy to thermal mass is: Q = C t h Δ T {\displaystyle Q=C_{\mathrm {th} }\Delta T\,} where Q is the thermal energy transferred, C th is the thermal mass of the body, and Δ T is the change in temperature.