Search results
Results from the WOW.Com Content Network
Every polynomial function is continuous, smooth, and entire. The evaluation of a polynomial is the computation of the corresponding polynomial function; that is, the evaluation consists of substituting a numerical value to each indeterminate and carrying out the indicated multiplications and additions.
The expression + + , especially when treated as an object in itself rather than as a function, is a quadratic polynomial, a polynomial of degree two. In elementary mathematics a polynomial and its associated polynomial function are rarely distinguished and the terms quadratic function and quadratic polynomial are nearly synonymous and ...
Graph of a linear function Graph of a polynomial function, here a quadratic function. Graph of two trigonometric functions: sine and cosine. A real function is a real-valued function of a real variable, that is, a function whose codomain is the field of real numbers and whose domain is a set of real numbers that contains an interval.
Graph of a polynomial function of degree 4, with its 4 roots and 3 critical points. + + + + = where a ≠ 0. The quartic is the highest order polynomial equation that can be solved by radicals in the general case (i.e., one in which the coefficients can take any value).
The quadratic formula =. is a closed form of the solutions to the general quadratic equation + + =. More generally, in the context of polynomial equations, a closed form of a solution is a solution in radicals; that is, a closed-form expression for which the allowed functions are only n th-roots and field operations (+,,, /).
The rising and falling factorials are well defined in any unital ring, and therefore can be taken to be, for example, a complex number, including negative integers, or a polynomial with complex coefficients, or any complex-valued function.
In mathematics, a cubic function is a function of the form () = + + +, that is, a polynomial function of degree three. In many texts, the coefficients a , b , c , and d are supposed to be real numbers , and the function is considered as a real function that maps real numbers to real numbers or as a complex function that maps complex numbers to ...
Horner's method evaluates a polynomial using repeated bracketing: + + + + + = + (+ (+ (+ + (+)))). This method reduces the number of multiplications and additions to just Horner's method is so common that a computer instruction "multiply–accumulate operation" has been added to many computer processors, which allow doing the addition and multiplication operations in one combined step.