enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models , and other sequence learning methods.

  3. Jürgen Schmidhuber - Wikipedia

    en.wikipedia.org/wiki/Jürgen_Schmidhuber

    This led to the long short-term memory (LSTM), a type of recurrent neural network. The name LSTM was introduced in a tech report (1995) leading to the most cited LSTM publication (1997), co-authored by Hochreiter and Schmidhuber. [19] It was not yet the standard LSTM architecture which is used in almost all current applications. The standard ...

  4. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    A multiple timescales recurrent neural network (MTRNN) is a neural-based computational model that can simulate the functional hierarchy of the brain through self-organization depending on the spatial connection between neurons and on distinct types of neuron activities, each with distinct time properties.

  5. Connectionist temporal classification - Wikipedia

    en.wikipedia.org/wiki/Connectionist_temporal...

    Alternative approaches to a CTC-fitted neural network include a hidden Markov model (HMM). In 2009, a Connectionist Temporal Classification (CTC)-trained LSTM network was the first RNN to win pattern recognition contests when it won several competitions in connected handwriting recognition. [4] [5]

  6. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  7. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    Some artificial neural networks are adaptive systems and are used for example to model populations and environments, which constantly change. Neural networks can be hardware- (neurons are represented by physical components) or software-based (computer models), and can use a variety of topologies and learning algorithms.

  8. Sepp Hochreiter - Wikipedia

    en.wikipedia.org/wiki/Sepp_Hochreiter

    Hochreiter developed the long short-term memory (LSTM) neural network architecture in his diploma thesis in 1991 leading to the main publication in 1997. [3] [4] LSTM overcomes the problem of numerical instability in training recurrent neural networks (RNNs) that prevents them from learning from long sequences (vanishing or exploding gradient).

  9. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    Neural networks can also be optimized by using a universal search algorithm on the space of neural network's weights, e.g., random guess or more systematically genetic algorithm. This approach is not based on gradient and avoids the vanishing gradient problem. [22]