enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Two's complement - Wikipedia

    en.wikipedia.org/wiki/Two's_complement

    Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, [1] and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 the number is signed as negative and when the most ...

  3. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    Addition of a pair of two's-complement integers is the same as addition of a pair of unsigned numbers (except for detection of overflow, if that is done); the same is true for subtraction and even for N lowest significant bits of a product (value of multiplication). For instance, a two's-complement addition of 127 and −128 gives the same ...

  4. Overflow flag - Wikipedia

    en.wikipedia.org/wiki/Overflow_flag

    In computer processors, the overflow flag (sometimes called the V flag) is usually a single bit in a system status register used to indicate when an arithmetic overflow has occurred in an operation, indicating that the signed two's-complement result would not fit in the number of bits used for the result. Some architectures may be configured to ...

  5. Adder–subtractor - Wikipedia

    en.wikipedia.org/wiki/Adder–subtractor

    A 4-bit ripple-carry adder–subtractor based on a 4-bit adder that performs two's complement on A when D = 1 to yield S = B − A. Having an n-bit adder for A and B, then S = A + B. Then, assume the numbers are in two's complement. Then to perform B − A, two's complement theory says to invert each bit of A with a NOT gate then add one.

  6. Atmel AVR instruction set - Wikipedia

    en.wikipedia.org/wiki/Atmel_AVR_instruction_set

    V Overflow flag. Set in case of two's complement overflow. S Sign flag. Unique to AVR, this is always N⊕V, and shows the true sign of a comparison. H Half-carry flag. This is an internal carry from additions and is used to support BCD arithmetic. T Bit copy. Special bit load and bit store instructions use this bit. I Interrupt flag. Set when ...

  7. Talk:Two's complement - Wikipedia

    en.wikipedia.org/wiki/Talk:Two's_complement

    The columns represent: a binary (two's-complement) representation of a number, the corresponding decimal number, and its two's complement. I labeled the first column "binary" in the interest of brevity and on the assumption that "two's-complement notation" would be safely implied, but in retrospect, it opened the table to misinterpretation.

  8. Booth's multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Booth's_multiplication...

    Booth's multiplication algorithm is a multiplication algorithm that multiplies two signed binary numbers in two's complement notation. The algorithm was invented by Andrew Donald Booth in 1950 while doing research on crystallography at Birkbeck College in Bloomsbury, London. [1] Booth's algorithm is of interest in the study of computer ...

  9. Method of complements - Wikipedia

    en.wikipedia.org/wiki/Method_of_complements

    The nines' complement of a decimal digit is the number that must be added to it to produce 9; the nines' complement of 3 is 6, the nines' complement of 7 is 2, and so on, see table. To form the nines' complement of a larger number, each digit is replaced by its nines' complement. Consider the following subtraction problem: