Search results
Results from the WOW.Com Content Network
A real number x is the least upper bound (or supremum) for S if x is an upper bound for S and x ≤ y for every upper bound y of S. The least-upper-bound property states that any non-empty set of real numbers that has an upper bound must have a least upper bound in real numbers.
There is a corresponding greatest-lower-bound property; an ordered set possesses the greatest-lower-bound property if and only if it also possesses the least-upper-bound property; the least-upper-bound of the set of lower bounds of a set is the greatest-lower-bound, and the greatest-lower-bound of the set of upper bounds of a set is the least ...
A set with upper bounds and its least upper bound. In mathematics, particularly in order theory, an upper bound or majorant [1] of a subset S of some preordered set (K, ≤) is an element of K that is greater than or equal to every element of S.
Thus, the infimum or meet of a collection of subsets is the greatest lower bound while the supremum or join is the least upper bound. In this context, the inner limit, lim inf X n, is the largest meeting of tails of the sequence, and the outer limit, lim sup X n, is the smallest joining of tails of the sequence. The following makes this precise.
In mathematics, specifically order theory, the join of a subset of a partially ordered set is the supremum (least upper bound) of , denoted , and similarly, the meet of is the infimum (greatest lower bound), denoted .
Thus u is an upper bound for S. To see that it is a least upper bound, notice that the limit of (u n − l n) is 0, and so l = u. Now suppose b < u = l is a smaller upper bound for S. Since (l n) is monotonic increasing it is easy to see that b < l n for some n. But l n is not an upper bound for S and so neither is b. Hence u is a least upper ...
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).
The least-upper-bound property states that every nonempty subset of real numbers having an upper bound (or bounded above) must have a least upper bound (or supremum) in the set of real numbers. The rational number line Q does not have the least upper bound property. An example is the subset of rational numbers