Search results
Results from the WOW.Com Content Network
Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films .
In the metal organic chemical vapor deposition (MOCVD) technique, reactant gases are combined at elevated temperatures in the reactor to cause a chemical interaction, resulting in the deposition of materials on the substrate. A reactor is a chamber made of a material that does not react with the chemicals being used.
The catalytic vapor phase deposition of carbon was reported in 1952 [11] and 1959, [12] but it was not until 1993 [13] that carbon nanotubes were formed by this process. In 2007, researchers at the University of Cincinnati (UC) developed a process to grow aligned carbon nanotube arrays of length 18 mm on a FirstNano ET3000 carbon nanotube ...
Plasma (argon-only on the left, argon and silane on the right) inside a prototype LEPECVD reactor at the LNESS laboratory in Como, Italy.. Low-energy plasma-enhanced chemical vapor deposition (LEPECVD) is a plasma-enhanced chemical vapor deposition technique used for the epitaxial deposition of thin semiconductor (silicon, germanium and SiGe alloys) films.
Atomic layer deposition (ALD) is a thin-film deposition technique based on the sequential use of a gas-phase chemical process; it is a subclass of chemical vapour deposition. The majority of ALD reactions use two chemicals called precursors (also called "reactants"). These precursors react with the surface of a material one at a time in a ...
Figure 1. Conventional Chemical Vapour Infiltration. [3]• Matrix material carried by the gas ↑ Carrier gas Not drawn to scale CVI growth. Figure 2. [3]During chemical vapour infiltration, the fibrous preform is supported on a porous metallic plate through which a mixture of carrier gas along with matrix material is passed at an elevated temperature.
Au-Si droplets on the surface of the substrate act to lower the activation energy of normal vapor-solid growth. For example, Si can be deposited by means of a SiCl 4:H 2 gaseous mixture reaction (chemical vapor deposition), only at temperatures above 800 °C, in normal vapor-solid growth. Moreover, below this temperature almost no Si is ...
Plasma-enhanced chemical vapor deposition (PECVD) is a chemical vapor deposition process used to deposit thin films from a gas state to a solid state on a substrate. Chemical reactions are involved in the process, which occur after creation of a plasma of the reacting gases.