enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Overfitting - Wikipedia

    en.wikipedia.org/wiki/Overfitting

    Underfitting is the inverse of overfitting, meaning that the statistical model or machine learning algorithm is too simplistic to accurately capture the patterns in the data. A sign of underfitting is that there is a high bias and low variance detected in the current model or algorithm used (the inverse of overfitting: low bias and high variance).

  3. Early stopping - Wikipedia

    en.wikipedia.org/wiki/Early_stopping

    In machine learning, early stopping is a form of regularization used to avoid overfitting when training a model with an iterative method, such as gradient descent. Such methods update the model to make it better fit the training data with each iteration.

  4. Data augmentation - Wikipedia

    en.wikipedia.org/wiki/Data_augmentation

    Data augmentation is a statistical technique which allows maximum likelihood estimation from incomplete data. [1] [2] Data augmentation has important applications in Bayesian analysis, [3] and the technique is widely used in machine learning to reduce overfitting when training machine learning models, [4] achieved by training models on several slightly-modified copies of existing data.

  5. Dilution (neural networks) - Wikipedia

    en.wikipedia.org/wiki/Dilution_(neural_networks)

    On the left is a fully connected neural network with two hidden layers. On the right is the same network after applying dropout. Dilution and dropout (also called DropConnect [1]) are regularization techniques for reducing overfitting in artificial neural networks by preventing complex co-adaptations on training data.

  6. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  7. Statistical learning theory - Wikipedia

    en.wikipedia.org/wiki/Statistical_learning_theory

    This image represents an example of overfitting in machine learning. The red dots represent training set data. The green line represents the true functional relationship, while the blue line shows the learned function, which has been overfitted to the training set data. In machine learning problems, a major problem that arises is that of ...

  8. Double descent - Wikipedia

    en.wikipedia.org/wiki/Double_descent

    3 Empirical examples. 4 References. ... Download QR code; Print/export ... as it contradicts assumptions about overfitting in classical machine learning. [3]

  9. Decision tree pruning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_pruning

    Pruning is a data compression technique in machine learning and search algorithms that reduces the size of decision trees by removing sections of the tree that are non-critical and redundant to classify instances. Pruning reduces the complexity of the final classifier, and hence improves predictive accuracy by the reduction of overfitting.