Search results
Results from the WOW.Com Content Network
A curve of constant width can rotate between two parallel lines separated by its width, while at all times touching those lines, which act as supporting lines for the rotated curve. In the same way, a curve of constant width can rotate within a rhombus or square, whose pairs of opposite sides are separated by the width and lie on parallel ...
In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Informally, it is a line through a pair of infinitely close points on the curve. More precisely, a straight line is said to be a tangent of a curve y = f(x) at a point x = c on the curve if the ...
where c ∈ ℝ n is the center of the circle (irrelevant since it disappears in the derivatives), a,b ∈ ℝ n are perpendicular vectors of length ρ (that is, a · a = b · b = ρ 2 and a · b = 0), and h : ℝ → ℝ is an arbitrary function which is twice differentiable at t. The relevant derivatives of g work out to be
The orthographic projection of Viviani's curve onto a plane perpendicular to the line through the crossing point and the sphere center is the lemniscate of Gerono, while the stereographic projection is a hyperbola or the lemniscate of Bernoulli, depending on which point on the same line is used to project. [3]
A line is said to be perpendicular to a plane if it is perpendicular to every line in the plane that it intersects. This definition depends on the definition of perpendicularity between lines. Two planes in space are said to be perpendicular if the dihedral angle at which they meet is a right angle.
Alternatively, a line can be described as the intersection of two planes. Let L be a line contained in distinct planes a and b with homogeneous coefficients (a 0 : a 1 : a 2 : a 3) and (b 0 : b 1 : b 2 : b 3), respectively. (The first plane equation is =, for example.)
In mathematics, a pedal curve of a given curve results from the orthogonal projection of a fixed point on the tangent lines of this curve. More precisely, for a plane curve C and a given fixed pedal point P , the pedal curve of C is the locus of points X so that the line PX is perpendicular to a tangent T to the curve passing through the point X .
In Euclidean geometry, for a plane curve C and a given fixed point O, the pedal equation of the curve is a relation between r and p where r is the distance from O to a point on C and p is the perpendicular distance from O to the tangent line to C at the point.