enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Confounding - Wikipedia

    en.wikipedia.org/wiki/Confounding

    Confounding variables may also be categorised according to their source. The choice of measurement instrument (operational confound), situational characteristics (procedural confound), or inter-individual differences (person confound). An operational confounding can occur in both experimental and non-experimental research designs. This type of ...

  3. Spurious relationship - Wikipedia

    en.wikipedia.org/wiki/Spurious_relationship

    Graphical model: Whereas a mediator is a factor in the causal chain (top), a confounder is a spurious factor incorrectly implying causation (bottom). In statistics, a spurious relationship or spurious correlation [1] [2] is a mathematical relationship in which two or more events or variables are associated but not causally related, due to either coincidence or the presence of a certain third ...

  4. Correlation does not imply causation - Wikipedia

    en.wikipedia.org/wiki/Correlation_does_not_imply...

    All of those examples deal with a lurking variable, which is simply a hidden third variable that affects both of the variables observed to be correlated. That third variable is also known as a confounding variable, with the slight difference that confounding variables need not be hidden and may thus be corrected for in an analysis. Note that ...

  5. Control variable - Wikipedia

    en.wikipedia.org/wiki/Control_variable

    A variable in an experiment which is held constant in order to assess the relationship between multiple variables [a], is a control variable. [2] [3] A control variable is an element that is not changed throughout an experiment because its unchanging state allows better understanding of the relationship between the other variables being tested. [4]

  6. Blocking (statistics) - Wikipedia

    en.wikipedia.org/wiki/Blocking_(statistics)

    In the examples listed above, a nuisance variable is a variable that is not the primary focus of the study but can affect the outcomes of the experiment. [3] They are considered potential sources of variability that, if not controlled or accounted for, may confound the interpretation between the independent and dependent variables .

  7. Population structure (genetics) - Wikipedia

    en.wikipedia.org/wiki/Population_structure...

    For this reason, population structure is a common confounding variable in medical genetics studies, and accounting for and controlling its effect is important in genome wide association studies (GWAS). By tracing the origins of structure, it is also possible to study the genetic ancestry of groups and individuals.

  8. Controlling for a variable - Wikipedia

    en.wikipedia.org/wiki/Controlling_for_a_variable

    The variables made to remain constant during an experiment are referred to as control variables. For example, if an outdoor experiment were to be conducted to compare how different wing designs of a paper airplane (the independent variable) affect how far it can fly (the dependent variable), one would want to ensure that the experiment is ...

  9. Simpson's paradox - Wikipedia

    en.wikipedia.org/wiki/Simpson's_paradox

    The phenomenon may disappear or even reverse if the data is stratified differently or if different confounding variables are considered. Simpson's example actually highlighted a phenomenon called noncollapsibility, [32] which occurs when subgroups with high proportions do not make simple averages when combined. This suggests that the paradox ...