Search results
Results from the WOW.Com Content Network
The Computer Vision and Image Processing Algorithm Test and Analysis Tool, CVIP-ATAT, creates human and computer vision applications. Its primary use is to execute algorithms for processing multiple images at a time, incorporating various algorithmic and parameter variations. The program determines a suitable algorithm for pre-processing ...
Images plus .mat file labels Human pose estimation 2011 [196] S. Johnson and M. Everingham MCQ Dataset 6 different real multiple choice-based exams (735 answer sheets and 33,540 answer boxes) to evaluate computer vision techniques and systems developed for multiple choice test assessment systems. None 735 answer sheets and 33,540 answer boxes
Computer vision is an interdisciplinary field that deals with how computers can be made to gain high-level understanding from digital images or videos.From the perspective of engineering, it seeks to automate tasks that the human visual system can do.
A useful extension to the original operator is the so-called uniform pattern, [8] which can be used to reduce the length of the feature vector and implement a simple rotation invariant descriptor. This idea is motivated by the fact that some binary patterns occur more commonly in texture images than others.
Computer Vision Annotation Tool (CVAT) is a free, open source, web-based image and video annotation tool used for labeling data for computer vision algorithms. Originally developed by Intel , CVAT is designed for use by a professional data annotation team, with a user interface optimized for computer vision annotation tasks.
The Caltech 101 data set was used to train and test several computer vision recognition and classification algorithms. The first paper to use Caltech 101 was an incremental Bayesian approach to one-shot learning, [ 4 ] an attempt to classify an object using only a few examples, by building on prior knowledge of other classes.
The scale-invariant feature transform (SIFT) is a computer vision algorithm to detect, describe, and match local features in images, invented by David Lowe in 1999. [1] Applications include object recognition , robotic mapping and navigation, image stitching , 3D modeling , gesture recognition , video tracking , individual identification of ...
The CIFAR-10 dataset (Canadian Institute For Advanced Research) is a collection of images that are commonly used to train machine learning and computer vision algorithms. It is one of the most widely used datasets for machine learning research. [1] [2] The CIFAR-10 dataset contains 60,000 32x32 color images in 10 different classes. [3]