enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    Neural Turing machines (NTMs) are a method of extending recurrent neural networks by coupling them to external memory resources with which they interact. The combined system is analogous to a Turing machine or Von Neumann architecture but is differentiable end-to-end, allowing it to be efficiently trained with gradient descent .

  3. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  4. File:Structural diagrams of unidirectional and bidirectional ...

    en.wikipedia.org/wiki/File:Structural_diagrams...

    File:Structural diagrams of unidirectional and bidirectional recurrent neural networks.png. Add languages.

  5. Bidirectional recurrent neural networks - Wikipedia

    en.wikipedia.org/wiki/Bidirectional_recurrent...

    Bidirectional recurrent neural networks (BRNN) connect two hidden layers of opposite directions to the same output. With this form of generative deep learning , the output layer can get information from past (backwards) and future (forward) states simultaneously.

  6. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In 1982 a recurrent neural network, with an array architecture (rather than a multilayer perceptron architecture), named Crossbar Adaptive Array [65] [66] used direct recurrent connections from the output to the supervisor (teaching ) inputs. In addition of computing actions (decisions), it computed internal state evaluations (emotions) of the ...

  7. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models , and other sequence learning methods.

  8. Gated recurrent unit - Wikipedia

    en.wikipedia.org/wiki/Gated_recurrent_unit

    Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014 by Kyunghyun Cho et al. [1] The GRU is like a long short-term memory (LSTM) with a gating mechanism to input or forget certain features, [2] but lacks a context vector or output gate, resulting in fewer parameters than LSTM. [3]

  9. Hopfield network - Wikipedia

    en.wikipedia.org/wiki/Hopfield_network

    A Hopfield network (or associative memory) is a form of recurrent neural network, or a spin glass system, that can serve as a content-addressable memory.The Hopfield network, named for John Hopfield, consists of a single layer of neurons, where each neuron is connected to every other neuron except itself.