enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  3. LightGBM - Wikipedia

    en.wikipedia.org/wiki/LightGBM

    LightGBM, short for Light Gradient-Boosting Machine, is a free and open-source distributed gradient-boosting framework for machine learning, originally developed by Microsoft. [4] [5] It is based on decision tree algorithms and used for ranking, classification and other machine learning tasks. The development focus is on performance and ...

  4. Local binary patterns - Wikipedia

    en.wikipedia.org/wiki/Local_binary_patterns

    BGSLibrary includes the original LBP implementation for motion detection [12] as well as a new LBP operator variant combined with Markov Random Fields [13] with improved recognition rates and robustness. dlib, an open source C++ library: implementation. scikit-image, an open source Python library. Provides a c-based python implementation for LBP

  5. Python (programming language) - Wikipedia

    en.wikipedia.org/wiki/Python_(programming_language)

    Python 3.0, released in 2008, was a major revision not completely backward-compatible with earlier versions. Python 2.7.18, released in 2020, was the last release of Python 2. [37] Python consistently ranks as one of the most popular programming languages, and has gained widespread use in the machine learning community. [38] [39] [40] [41]

  6. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    The computational analysis of machine learning algorithms and their performance is a branch of theoretical computer science known as computational learning theory via the Probably Approximately Correct Learning (PAC) model. Because training sets are finite and the future is uncertain, learning theory usually does not yield guarantees of the ...

  7. Neural operators - Wikipedia

    en.wikipedia.org/wiki/Neural_operators

    Operator learning is a machine learning paradigm to learn solution operators mapping the input function to the output function. Using traditional machine learning methods, addressing this problem would involve discretizing the infinite-dimensional input and output function spaces into finite-dimensional grids and applying standard learning ...

  8. CatBoost - Wikipedia

    en.wikipedia.org/wiki/Catboost

    It works on Linux, Windows, macOS, and is available in Python, [8] R, [9] and models built using CatBoost can be used for predictions in C++, Java, [10] C#, Rust, Core ML, ONNX, and PMML. The source code is licensed under Apache License and available on GitHub. [6] InfoWorld magazine awarded the library "The best machine learning tools" in 2017.

  9. Minimum description length - Wikipedia

    en.wikipedia.org/wiki/Minimum_description_length

    MDL applies in machine learning when algorithms (machines) generate descriptions. Learning occurs when an algorithm generates a shorter description of the same data set. The theoretic minimum description length of a data set, called its Kolmogorov complexity, cannot, however, be computed.