enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quintic function - Wikipedia

    en.wikipedia.org/wiki/Quintic_function

    Solving quintic equations in terms of radicals (nth roots) was a major problem in algebra from the 16th century, when cubic and quartic equations were solved, until the first half of the 19th century, when the impossibility of such a general solution was proved with the Abel–Ruffini theorem.

  3. Abel–Ruffini theorem - Wikipedia

    en.wikipedia.org/wiki/Abel–Ruffini_theorem

    Proving that the general quintic (and higher) equations were unsolvable by radicals did not completely settle the matter, because the Abel–Ruffini theorem does not provide necessary and sufficient conditions for saying precisely which quintic (and higher) equations are unsolvable by radicals.

  4. Quartic equation - Wikipedia

    en.wikipedia.org/wiki/Quartic_equation

    There exists a general formula for finding the roots to quartic equations, provided the coefficient of the leading term is non-zero. However, since the general method is quite complex and susceptible to errors in execution, it is better to apply one of the special cases listed below if possible.

  5. Solution in radicals - Wikipedia

    en.wikipedia.org/wiki/Solution_in_radicals

    A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula

  6. Thomae's formula - Wikipedia

    en.wikipedia.org/wiki/Thomae's_formula

    This formula applies to any algebraic equation of any degree without need for a Tschirnhaus transformation or any other manipulation to bring the equation into a specific normal form, such as the Bring–Jerrard form for the quintic. However, application of this formula in practice is difficult because the relevant hyperelliptic integrals and ...

  7. Bring radical - Wikipedia

    en.wikipedia.org/wiki/Bring_radical

    The general quintic may be reduced into what is known as the principal quintic form, with the quartic and cubic terms removed: + + + =. If the roots of a general quintic and a principal quintic are related by a quadratic Tschirnhaus transformation = + +, the coefficients and may be determined by using the resultant, or by means of the power sums of the roots and Newton's identities.

  8. Galois theory - Wikipedia

    en.wikipedia.org/wiki/Galois_theory

    Lagrange's method did not extend to quintic equations or higher, because the resolvent had higher degree. The quintic was almost proven to have no general solutions by radicals by Paolo Ruffini in 1799, whose key insight was to use permutation groups , not just a single permutation.

  9. Degree of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Degree_of_a_polynomial

    The polynomial () (+) is a cubic polynomial: after multiplying out and collecting terms of the same degree, it becomes + +, with highest exponent 3.. The polynomial (+ +) + (+ + +) is a quintic polynomial: upon combining like terms, the two terms of degree 8 cancel, leaving + + + +, with highest exponent 5.