Search results
Results from the WOW.Com Content Network
Because they have an odd degree, normal quintic functions appear similar to normal cubic functions when graphed, except they may possess one additional local maximum and one additional local minimum. The derivative of a quintic function is a quartic function. Setting g(x) = 0 and assuming a ≠ 0 produces a quintic equation of the form:
The conjecture is that there is a simple way to tell whether such equations have a finite or infinite number of rational solutions. More specifically, the Millennium Prize version of the conjecture is that, if the elliptic curve E has rank r , then the L -function L ( E , s ) associated with it vanishes to order r at s = 1 .
Something more general is required for equations of higher degree, so to solve the quintic, Hermite, et al. replaced the exponential by an elliptic modular function and the integral (logarithm) by an elliptic integral. Kronecker believed that this was a special case of a still more general method. [1]
In mathematics, a quartic equation is one which can be expressed as a quartic function equaling zero. The general form of a quartic equation is Graph of a polynomial function of degree 4, with its 4 roots and 3 critical points.
Each coordinate of the intersection points of two conic sections is a solution of a quartic equation. The same is true for the intersection of a line and a torus.It follows that quartic equations often arise in computational geometry and all related fields such as computer graphics, computer-aided design, computer-aided manufacturing and optics.
A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula
The general quintic equation in Bring-Jerrard form: x 5 − 5 x − 4 a = 0 {\displaystyle x^{5}-5x-4a=0} for every real value a > 1 {\displaystyle a>1} can be solved in terms of Rogers-Ramanujan continued fraction R ( q ) {\displaystyle R(q)} and the elliptic nome
Retrieved from "https://en.wikipedia.org/w/index.php?title=General_quintic_equation&oldid=418996812"