enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Acidosis - Wikipedia

    en.wikipedia.org/wiki/Acidosis

    One key to distinguish between respiratory and metabolic acidosis is that in respiratory acidosis, the CO 2 is increased while the bicarbonate is either normal (uncompensated) or increased (compensated). Compensation occurs if respiratory acidosis is present, and a chronic phase is entered with partial buffering of the acidosis through renal ...

  3. Base excess - Wikipedia

    en.wikipedia.org/wiki/Base_excess

    metabolic acidosis, or respiratory alkalosis with renal compensation if too low (less than −2 mEq/L) Blood pH is determined by both a metabolic component, measured by base excess, and a respiratory component, measured by PaCO 2 (partial pressure of carbon dioxide). Often a disturbance in one triggers a partial compensation in the other.

  4. Respiratory acidosis - Wikipedia

    en.wikipedia.org/wiki/Respiratory_acidosis

    Acute respiratory acidosis occurs when an abrupt failure of ventilation occurs. This failure in ventilation may be caused by depression of the central respiratory center by cerebral disease or drugs, inability to ventilate adequately due to neuromuscular disease (e.g., myasthenia gravis, amyotrophic lateral sclerosis, Guillain–Barré syndrome, muscular dystrophy), or airway obstruction ...

  5. Pulmonary gas pressures - Wikipedia

    en.wikipedia.org/wiki/Pulmonary_gas_pressures

    The partial pressure of carbon dioxide, along with the pH, can be used to differentiate between metabolic acidosis, metabolic alkalosis, respiratory acidosis, and respiratory alkalosis. Hypoventilation exists when the ratio of carbon dioxide production to alveolar ventilation increases above normal values – greater than 45mmHg.

  6. Alkalosis - Wikipedia

    en.wikipedia.org/wiki/Alkalosis

    Compensatory mechanism for metabolic alkalosis involve slowed breathing by the lungs to increase serum carbon dioxide, [2] a condition leaning toward respiratory acidosis. As respiratory acidosis often accompanies the compensation for metabolic alkalosis, and vice versa, a delicate balance is created between these two conditions.

  7. Acid–base homeostasis - Wikipedia

    en.wikipedia.org/wiki/Acid–base_homeostasis

    One or a combination of these conditions may occur simultaneously. For instance, a metabolic acidosis (as in uncontrolled diabetes mellitus) is almost always partially compensated by a respiratory alkalosis (hyperventilation). Similarly, a respiratory acidosis can be completely or partially corrected by a metabolic alkalosis. [citation needed]

  8. Metabolic acidosis - Wikipedia

    en.wikipedia.org/wiki/Metabolic_acidosis

    Metabolic acidosis results in a reduced serum pH that is due to metabolic and not respiratory dysfunction. Typically the serum bicarbonate concentration will be <22 mEq/L, below the normal range of 22 to 29 mEq/L, the standard base will be more negative than -2 (base deficit) and the pCO 2 will be reduced as a result of hyperventilation in an ...

  9. Kussmaul breathing - Wikipedia

    en.wikipedia.org/wiki/Kussmaul_breathing

    Adolf Kussmaul referred to breathing when metabolic acidosis was sufficiently severe for the respiratory rate to be normal or reduced. [2] This definition is also followed by several other sources, [3] [4] including for instance Merriam-Webster, which defines Kussmaul breathing as "abnormally slow deep respiration characteristic of air hunger and occurring especially in acidotic states". [5]