enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. C4.5 algorithm - Wikipedia

    en.wikipedia.org/wiki/C4.5_algorithm

    C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.

  3. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    The poLCA package [38] clusters categorical data using the latent class model. The clustMD package [25] clusters mixed data, including continuous, binary, ordinal and nominal variables. The flexmix package [39] does model-based clustering for a range of component distributions. The mixtools package [40] can cluster different

  4. Relational data mining - Wikipedia

    en.wikipedia.org/wiki/Relational_data_mining

    Relational data mining is the data mining technique for relational databases. [1] Unlike traditional data mining algorithms, which look for patterns in a single table (propositional patterns), relational data mining algorithms look for patterns among multiple tables (relational patterns). For most types of propositional patterns, there are ...

  5. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision trees used in data mining are of two main types: Classification tree analysis is when the predicted outcome is the class (discrete) to which the data belongs. Regression tree analysis is when the predicted outcome can be considered a real number (e.g. the price of a house, or a patient's length of stay in a hospital).

  6. Category:Data mining algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Data_mining...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us

  7. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    A typical example of the k-means convergence to a local minimum. In this example, the result of k-means clustering (the right figure) contradicts the obvious cluster structure of the data set. The small circles are the data points, the four ray stars are the centroids (means). The initial configuration is on the left figure.

  8. Examples of data mining - Wikipedia

    en.wikipedia.org/wiki/Examples_of_data_mining

    An example of data mining related to an integrated-circuit (IC) production line is described in the paper "Mining IC Test Data to Optimize VLSI Testing." [12] In this paper, the application of data mining and decision analysis to the problem of die-level functional testing is described. Experiments mentioned demonstrate the ability to apply a ...

  9. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    Each sample is composed of a random subset of the original data and maintains a semblance of the master set's distribution and variability. For each bootstrap sample, a LOESS smoother was fit. Predictions from these 100 smoothers were then made across the range of the data. The black lines represent these initial predictions.