enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...

  3. Associative classifier - Wikipedia

    en.wikipedia.org/wiki/Associative_classifier

    An associative classifier (AC) is a kind of supervised learning model that uses association rules to assign a target value. The term associative classification was coined by Bing Liu et al., [1] in which the authors defined a model made of rules "whose right-hand side are restricted to the classification class attribute".

  4. Examples of data mining - Wikipedia

    en.wikipedia.org/wiki/Examples_of_data_mining

    An example of data mining related to an integrated-circuit (IC) production line is described in the paper "Mining IC Test Data to Optimize VLSI Testing." [12] In this paper, the application of data mining and decision analysis to the problem of die-level functional testing is described. Experiments mentioned demonstrate the ability to apply a ...

  5. Conceptual clustering - Wikipedia

    en.wikipedia.org/wiki/Conceptual_clustering

    Conceptual clustering is a machine learning paradigm for unsupervised classification that has been defined by Ryszard S. Michalski in 1980 (Fisher 1987, Michalski 1980) and developed mainly during the 1980s. It is distinguished from ordinary data clustering by generating a concept description for each generated class.

  6. Probabilistic classification - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_classification

    Formally, an "ordinary" classifier is some rule, or function, that assigns to a sample x a class label ลท: y ^ = f ( x ) {\displaystyle {\hat {y}}=f(x)} The samples come from some set X (e.g., the set of all documents , or the set of all images ), while the class labels form a finite set Y defined prior to training.

  7. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).

  8. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Data available in the project's website. Data is also available here. [367] Zampieri et al. Cyber reports from the National Cyber Security Centre This data is not pre-processed. Threat reports, reports and advisory, news, blog-posts, speeches. Alternate list of reports. [368] APT reports by Kaspersky This data is not pre-processed. [369] The ...

  9. One-class classification - Wikipedia

    en.wikipedia.org/wiki/One-class_classification

    In machine learning, one-class classification (OCC), also known as unary classification or class-modelling, tries to identify objects of a specific class amongst all objects, by primarily learning from a training set containing only the objects of that class, [1] although there exist variants of one-class classifiers where counter-examples are used to further refine the classification boundary.