enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    With low-order polynomials, the curve is more likely to fall near the midpoint (it's even guaranteed to exactly run through the midpoint on a first degree polynomial). Low-order polynomials tend to be smooth and high order polynomial curves tend to be "lumpy". To define this more precisely, the maximum number of inflection points possible in a ...

  3. Runge's phenomenon - Wikipedia

    en.wikipedia.org/wiki/Runge's_phenomenon

    A ninth order polynomial interpolation (exact replication of the red curve at 10 points) In the mathematical field of numerical analysis, Runge's phenomenon (German:) is a problem of oscillation at the edges of an interval that occurs when using polynomial interpolation with polynomials of high degree over a set of equispaced interpolation points.

  4. Polynomial and rational function modeling - Wikipedia

    en.wikipedia.org/wiki/Polynomial_and_rational...

    A polynomial function is one that has the form = + + + + + where n is a non-negative integer that defines the degree of the polynomial. A polynomial with a degree of 0 is simply a constant function; with a degree of 1 is a line; with a degree of 2 is a quadratic; with a degree of 3 is a cubic, and so on.

  5. Real algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Real_algebraic_geometry

    Examples: Real plane curves are examples of real algebraic sets and polyhedra are examples of semialgebraic sets. Real algebraic functions and Nash functions are examples of semialgebraic mappings. Piecewise polynomial mappings (see the Pierce–Birkhoff conjecture) are also semialgebraic mappings.

  6. Function of several real variables - Wikipedia

    en.wikipedia.org/wiki/Function_of_several_real...

    For real-valued functions of a real variable, y = f(x), its ordinary derivative dy/dx is geometrically the gradient of the tangent line to the curve y = f(x) at all points in the domain. Partial derivatives extend this idea to tangent hyperplanes to a curve. The second order partial derivatives can be calculated for every pair of variables:

  7. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    An important example in calculus is Taylor's theorem, which roughly states that every differentiable function locally looks like a polynomial function, and the Stone–Weierstrass theorem, which states that every continuous function defined on a compact interval of the real axis can be approximated on the whole interval as closely as desired by ...

  8. Hilbert's sixteenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_sixteenth_problem

    Curves with that number of components are called M-curves. Hilbert had investigated the M-curves of degree 6, and found that the 11 components always were grouped in a certain way. His challenge to the mathematical community now was to completely investigate the possible configurations of the components of the M-curves.

  9. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function , the Taylor polynomial is the truncation at the order k {\textstyle k} of the Taylor series of the function.