Search results
Results from the WOW.Com Content Network
Sections 4.3 (The master method) and 4.4 (Proof of the master theorem), pp. 73–90. Michael T. Goodrich and Roberto Tamassia. Algorithm Design: Foundation, Analysis, and Internet Examples. Wiley, 2002. ISBN 0-471-38365-1. The master theorem (including the version of Case 2 included here, which is stronger than the one from CLRS) is on pp. 268 ...
In computer science, the Akra–Bazzi method, or Akra–Bazzi theorem, is used to analyze the asymptotic behavior of the mathematical recurrences that appear in the analysis of divide and conquer algorithms where the sub-problems have substantially different sizes.
In mathematics, a theorem that covers a variety of cases is sometimes called a master theorem. Some theorems called master theorems in their fields include: Master theorem (analysis of algorithms), analyzing the asymptotic behavior of divide-and-conquer algorithms; Ramanujan's master theorem, providing an analytic expression for the Mellin ...
In mathematics, Ramanujan's master theorem, named after Srinivasa Ramanujan, [1] is a technique that provides an analytic expression for the Mellin transform of an analytic function. Page from Ramanujan's notebook stating his Master theorem.
He explained the title as follows: "a Master Theorem from the masterly and rapid fashion in which it deals with various questions otherwise troublesome to solve." The result was re-derived (with attribution) a number of times, most notably by I. J. Good who derived it from his multilinear generalization of the Lagrange inversion theorem .
Ramanujan had some sort of master theorem, but it involved Laplace transforms, as I recall. This one looks like it's from analysis of algorithms. The MacMahon one is a big thing from combinatorics. Charles Matthews 15:50, 16 Apr 2004 (UTC) You're right, Charles. Master theorem definitely needs a disambig. page. Giftlite
A quantum master equation is a generalization of the idea of a master equation. Rather than just a system of differential equations for a set of probabilities (which only constitutes the diagonal elements of a density matrix), quantum master equations are differential equations for the entire density matrix, including off-diagonal elements. A ...
Theorem — Let X be a locally compact Hausdorff space equipped with a finite Radon measure μ, and let Y be a σ-compact Hausdorff space with a σ-finite Radon measure ρ. Let φ : X → Y be an absolutely continuous function (where the latter means that ρ ( φ ( E )) = 0 whenever μ ( E ) = 0 ).