Search results
Results from the WOW.Com Content Network
The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .
Euler's great interest in number theory can be traced to the influence of his friend in the St. Peterburg Academy, Christian Goldbach. A lot of his early work on number theory was based on the works of Pierre de Fermat, and developed some of Fermat's ideas. One focus of Euler's work was to link the nature of prime distribution with ideas in ...
Euler wrote the first proof of the fact that e is irrational in 1737 (but the text was only published seven years later). [1] [2] [3] He computed the representation of e as a simple continued fraction, which is
This last non-simple continued fraction (sequence A110185 in the OEIS), equivalent to = [;,,,,,...], has a quicker convergence rate compared to Euler's continued fraction formula [clarification needed] and is a special case of a general formula for the exponential function:
Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər; [b] German: [ˈleːɔnhaʁt ˈʔɔʏlɐ] ⓘ, Swiss Standard German: [ˈleɔnhard ˈɔʏlər]; 15 April 1707 – 18 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician, and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in many other branches of ...
Here, Euler's number e makes the shaded area equal to 1. Opus geometricum posthumum, 1668. In 1649, Alphonse Antonio de Sarasa, a former student of Grégoire de Saint-Vincent, [8] related logarithms to the quadrature of the hyperbola, by pointing out that the area A(t) under the hyperbola from x = 1 to x = t satisfies [9]
Euler's number e corresponds to shaded area equal to 1, introduced in chapter VII Introductio in analysin infinitorum ( Latin : [ 1 ] Introduction to the Analysis of the Infinite ) is a two-volume work by Leonhard Euler which lays the foundations of mathematical analysis .
The Swiss mathematician Jacob Bernoulli discovered that e arises in compound interest: If an account starts at $1, and yields interest at annual rate R, then as the number of compounding periods per year tends to infinity (a situation known as continuous compounding), the amount of money at the end of the year will approach e R dollars.