Search results
Results from the WOW.Com Content Network
AMD K6-2 – an improved K6 with the addition of the 3DNow! SIMD instructions. AMD K6-III Sharptooth – a further improved K6 with three levels of cache – 64 KB L1, 256 KB full-speed on-die L2, and a variable (up to 2 MB) L3. AMD K7 Athlon – microarchitecture of the AMD Athlon classic and Athlon XP microprocessors. Was a very advanced ...
Concrete products are codenamed "Llano": List of AMD accelerated processing units. Llano AMD Fusion ( K10 cores + Redwood -class GPU) (launch Q2 2011, this is the first AMD APU) uses Socket FM1 Bulldozer architecture; Bulldozer, Piledriver, Steamroller, Excavator (2011–2017)
AMD was the first to introduce the instructions that now form Intel's BMI1 as part of its ABM (Advanced Bit Manipulation) instruction set, then later added support for Intel's new BMI2 instructions. AMD today advertises the availability of these features via Intel's BMI1 and BMI2 cpuflags and instructs programmers to target them accordingly. [2]
The x86 instruction set has several times been extended with SIMD (Single instruction, multiple data) instruction set extensions.These extensions, starting from the MMX instruction set extension introduced with Pentium MMX in 1997, typically define sets of wide registers and instructions that subdivide these registers into fixed-size lanes and perform a computation for each lane in parallel.
Piledriver is the AMD codename for its improved second-generation microarchitecture based on Bulldozer. AMD Piledriver cores are found in Socket FM2 Trinity and Richland based series of APUs and CPUs and the Socket AM3+ Vishera based FX-series of CPUs. Piledriver was the last generation in the Bulldozer family to be available for socket AM3 ...
The four-operand form (FMA4) allows a, b, c and d to be four different registers, while the three-operand form (FMA3) requires that d be the same register as a, b or c. The three-operand form makes the code shorter and the hardware implementation slightly simpler, while the four-operand form provides more programming flexibility.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
AMD K6: 1997 6 Superscalar, branch prediction, speculative execution, out-of-order execution, register renaming [b] AMD K6-III: 1999 Branch prediction, speculative execution, out-of-order execution [1] AMD K7: 1999 Out-of-order execution, branch prediction, Harvard architecture: AMD K8: 2003 64-bit, integrated memory controller, 16 byte ...