Search results
Results from the WOW.Com Content Network
Hydrogen (1 H) has three naturally occurring isotopes: 1 H, 2 H, and 3 H. 1 H and 2 H are stable, while 3 H has a half-life of 12.32(2) years. [3] [nb 1] Heavier isotopes also exist; all are synthetic and have a half-life of less than 1 zeptosecond (10 −21 s). [4] [5] Of these, 5 H is the least stable, while 7 H is the most.
Hydrogen isotope biogeochemistry (HIBGC) is the scientific study of biological, geological, and chemical processes in the environment using the distribution and relative abundance of hydrogen isotopes. Hydrogen has two stable isotopes, protium 1 H and deuterium 2 H, which vary in relative abundance on the order of hundreds of permil.
Hydrogen is a chemical element; it has symbol H and atomic number 1. It is the lightest element and, at standard conditions, is a gas of diatomic molecules with the formula H 2, sometimes called dihydrogen, [11] hydrogen gas, molecular hydrogen, or simply hydrogen. It is colorless, odorless, [12] non-toxic, and highly combustible.
Tritium (from Ancient Greek τρίτος (trítos) 'third') or hydrogen-3 (symbol T or 3 H) is a rare and radioactive isotope of hydrogen with a half-life of ~12.3 years. The tritium nucleus (t, sometimes called a triton) contains one proton and two neutrons, whereas the nucleus of the common isotope hydrogen-1 (protium) contains one proton and no neutrons, and that of non-radioactive hydrogen ...
The fact that each isotope has one proton makes them all variants of hydrogen: the identity of the isotope is given by the number of protons and neutrons. From left to right, the isotopes are protium (1 H) with zero neutrons, deuterium (2 H) with one neutron, and tritium (3 H) with two neutrons. Isotopes are distinct nuclear species (or ...
Afrikaans; العربية; বাংলা; Беларуская; Български; Bosanski; Čeština; Ελληνικά; Español; فارسی; Français; 한국어
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds.
Since it was known that the atomic weight of oxygen was almost exactly 16 times as heavy as hydrogen, Raymond Birge, and Donald Menzel hypothesized that hydrogen had more than one isotope as well. Based upon the difference between the results of the two methods, they predicted that only one hydrogen atom in 4,500 was of the heavy isotope. [21]