Search results
Results from the WOW.Com Content Network
Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes. [1] [2]Mathematical induction is a method for proving that a statement () is true for every natural number, that is, that the infinitely many cases (), (), (), (), … all hold.
There are three inequalities between means to prove. There are various methods to prove the inequalities, including mathematical induction, the Cauchy–Schwarz inequality, Lagrange multipliers, and Jensen's inequality. For several proofs that GM ≤ AM, see Inequality of arithmetic and geometric means.
Bernoulli's inequality can be proved for case 2, in which is a non-negative integer and , using mathematical induction in the following form: we prove the inequality for r ∈ { 0 , 1 } {\displaystyle r\in \{0,1\}} ,
For the following proof we apply mathematical induction and only well-known rules of arithmetic. Induction basis: For n = 1 the statement is true with equality. Induction hypothesis: Suppose that the AM–GM statement holds for all choices of n non-negative real numbers. Induction step: Consider n + 1 non-negative real numbers x 1, . . . , x n+1, .
The triangle inequality can be extended by mathematical induction to arbitrary polygonal paths, showing that the total length of such a path is no less than the length of the straight line between its endpoints. Consequently, the length of any polygon side is always less than the sum of the other polygon side lengths.
This is done in Claim 1 using mathematical induction. In Claim 2 we rewrite the measure of a simplex in a convenient form, using the permutation invariance of product measures. In the third step we pass to the limit n to infinity to derive the desired variant of Grönwall's inequality.
The inequality with the subtractions can be proven easily via mathematical induction. The one with the additions is proven identically. The one with the additions is proven identically. We can choose n = 1 {\displaystyle n=1} as the base case and see that for this value of n {\displaystyle n} we get
The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let f {\displaystyle f} and g {\displaystyle g} be n {\displaystyle n} -times differentiable functions. The base case when n = 1 {\displaystyle n=1} claims that: ( f g ) ′ = f ′ g + f g ′ , {\displaystyle (fg)'=f'g+fg',} which is the usual product rule and is known ...