enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes. [1] [2]Mathematical induction is a method for proving that a statement () is true for every natural number, that is, that the infinitely many cases (), (), (), (), … all hold.

  3. Mathematics and Plausible Reasoning - Wikipedia

    en.wikipedia.org/wiki/Mathematics_and_plausible...

    Mathematics and Plausible Reasoning is a two-volume book by the mathematician George Pólya describing various methods for being a good guesser of new mathematical results. [ 1 ] [ 2 ] In the Preface to Volume 1 of the book Pólya exhorts all interested students of mathematics thus: "Certainly, let us learn proving, but also let us learn guessing."

  4. Solomonoff's theory of inductive inference - Wikipedia

    en.wikipedia.org/wiki/Solomonoff's_theory_of...

    The proof of this is derived from a game between the induction and the environment. Essentially, any computable induction can be tricked by a computable environment, by choosing the computable environment that negates the computable induction's prediction. This fact can be regarded as an instance of the no free lunch theorem.

  5. Induction, bounding and least number principles - Wikipedia

    en.wikipedia.org/wiki/Induction,_bounding_and...

    The induction, bounding and least number principles are commonly used in reverse mathematics and second-order arithmetic. For example, I Σ 1 {\displaystyle {\mathsf {I}}\Sigma _{1}} is part of the definition of the subsystem R C A 0 {\displaystyle {\mathsf {RCA}}_{0}} of second-order arithmetic.

  6. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    In proof by mathematical induction, a single "base case" is proved, and an "induction rule" is proved that establishes that any arbitrary case implies the next case. Since in principle the induction rule can be applied repeatedly (starting from the proved base case), it follows that all (usually infinitely many) cases are provable. [15]

  7. Proof by exhaustion - Wikipedia

    en.wikipedia.org/wiki/Proof_by_exhaustion

    Proof by exhaustion, also known as proof by cases, proof by case analysis, complete induction or the brute force method, is a method of mathematical proof in which the statement to be proved is split into a finite number of cases or sets of equivalent cases, and where each type of case is checked to see if the proposition in question holds. [1]

  8. Well-ordering principle - Wikipedia

    en.wikipedia.org/wiki/Well-ordering_principle

    Then show that for any counterexample there is a still smaller counterexample, producing a contradiction. This mode of argument is the contrapositive of proof by complete induction. It is known light-heartedly as the "minimal criminal" method [citation needed] and is similar in its nature to Fermat's method of "infinite descent".

  9. Category:Mathematical induction - Wikipedia

    en.wikipedia.org/.../Category:Mathematical_induction

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more