enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stressstrain_analysis

    Stressstrain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...

  3. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    This type of stress may be called (simple) normal stress or uniaxial stress; specifically, (uniaxial, simple, etc.) tensile stress. [13] If the load is compression on the bar, rather than stretching it, the analysis is the same except that the force F and the stress change sign, and the stress is called compressive stress.

  4. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stressstrain_curve

    The stress and strain can be normal, shear, or a mixture, and can also can be uniaxial, biaxial, or multiaxial, and can even change with time. The form of deformation can be compression, stretching, torsion, rotation, and so on. If not mentioned otherwise, stressstrain curve typically refers to the relationship between axial normal stress ...

  5. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    For simple unidirectional normal stresses all theories are equivalent, which means all theories will give the same result. Maximum shear stress theory postulates that failure will occur if the magnitude of the maximum shear stress in the part exceeds the shear strength of the material determined from uniaxial testing.

  6. Mohr's circle - Wikipedia

    en.wikipedia.org/wiki/Mohr's_circle

    To overcome the "issue" of having the shear stress axis downward in the Mohr-circle space, there is an alternative sign convention where positive shear stresses are assumed to rotate the material element in the clockwise direction and negative shear stresses are assumed to rotate the material element in the counterclockwise direction (Figure 5 ...

  7. Simple shear - Wikipedia

    en.wikipedia.org/wiki/Simple_shear

    Simple shear stressstrain relation [ edit ] In linear elasticity, shear stress , denoted τ {\displaystyle \tau } , is related to shear strain , denoted γ {\displaystyle \gamma } , by the following equation: [ 6 ]

  8. Strain (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Strain_(mechanics)

    The (infinitesimal) strain tensor (symbol ) is defined in the International System of Quantities (ISQ), more specifically in ISO 80000-4 (Mechanics), as a "tensor quantity representing the deformation of matter caused by stress. Strain tensor is symmetric and has three linear strain and three shear strain (Cartesian) components."

  9. Deformation (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(engineering)

    Depending on the type of material, size and geometry of the object, and the forces applied, various types of deformation may result. The image to the right shows the engineering stress vs. strain diagram for a typical ductile material such as steel.