Search results
Results from the WOW.Com Content Network
2005 DARPA Grand Challenge winner Stanley performed SLAM as part of its autonomous driving system. A map generated by a SLAM Robot. Simultaneous localization and mapping (SLAM) is the computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it.
This is a list of simultaneous localization and mapping (SLAM) methods. The KITTI Vision Benchmark Suite website has a more comprehensive list of Visual SLAM methods.
The software team made the program flexible enough to be used not just for roads and rivers, but almost any kind of spatial data: provincial boundaries, power-station locations, satellite images, and so on. The program was named JUMP (JAVA Unified Mapping Platform), and it has become a popular, free Geographic Information System (GIS).
slam toolbox [80] provides full 2D SLAM and localization system. gmapping [81] provides a wrapper for OpenSlam's Gmapping algorithm for simultaneous localization and mapping. cartographer [82] provides real time 2D and 3D SLAM algorithms developed at Google. amcl [83] provides an implementation of adaptive Monte-Carlo localization.
Map matching is the problem of how to match recorded geographic coordinates to a logical model of the real world, typically using some form of Geographic Information System. The most common approach is to take recorded, serial location points (e.g. from GPS ) and relate them to edges in an existing street graph (network), usually in a sorted ...
Web Mapping Thematic mapping. Creates image pictures from shapefiles and creates Google Maps websites with the data linked to the shapefile - Freeware: QGIS: yes Linux, MAC OS, Windows: QGIS Development Team qgis.org: Visualization Easy to use, ability to expand functionality with Python plugins. Geo-processing functions included. C++ GPL ...
Another non-parametric approach to Markov localization is the grid-based localization, which uses a histogram to represent the belief distribution. Compared with the grid-based approach, the Monte Carlo localization is more accurate because the state represented in samples is not discretized.
Robot localization denotes the robot's ability to establish its own position and orientation within the frame of reference. Path planning is effectively an extension of localization, in that it requires the determination of the robot's current position and a position of a goal location, both within the same frame of reference or coordinates.