Search results
Results from the WOW.Com Content Network
The symmetric group on a set of size n is the Galois group of the general polynomial of degree n and plays an important role in Galois theory. In invariant theory, the symmetric group acts on the variables of a multi-variate function, and the functions left invariant are the so-called symmetric functions.
The group of all permutations of a set M is the symmetric group of M, often written as Sym(M). [1] The term permutation group thus means a subgroup of the symmetric group. If M = {1, 2, ..., n} then Sym(M) is usually denoted by S n, and may be called the symmetric group on n letters. By Cayley's theorem, every group is isomorphic to some ...
For each non-linear group, the tables give the most standard notation of the finite group isomorphic to the point group, followed by the order of the group (number of invariant symmetry operations). The finite group notation used is: Z n: cyclic group of order n, D n: dihedral group isomorphic to the symmetry group of an n–sided regular ...
C 1 is the trivial group containing only the identity operation, which occurs when the figure is asymmetric, for example the letter "F". C 2 is the symmetry group of the letter "Z", C 3 that of a triskelion, C 4 of a swastika, and C 5, C 6, etc. are the symmetry groups of similar swastika-like figures with five, six, etc. arms instead of four.
The symmetric group of degree n ≥ 4 has Schur covers of order 2⋅n! There are two isomorphism classes if n ≠ 6 and one isomorphism class if n = 6. The alternating group of degree n has one isomorphism class of Schur cover, which has order n! except when n is 6 or 7, in which case the Schur cover has order 3⋅n!.
Considering the symmetric group S n of all permutations of the set {1, ..., n}, we can conclude that the map sgn: S n → {−1, 1} that assigns to every permutation its signature is a group homomorphism. [2] Furthermore, we see that the even permutations form a subgroup of S n. [1] This is the alternating group on n letters, denoted by A n. [3]
On the other hand, if one forms the product of two distinct involutions σ 1, σ 2 of type k > 1, then provided n ≥ 7, it is always possible to produce an element of order 6, 7 or 4, as follows. We can arrange that the product contains either two 2-cycles and a 3-cycle (for k = 2 and n ≥ 7) a 7-cycle (for k = 3 and n ≥ 7)
These are the only one-dimensional representations of the symmetric groups, as one-dimensional representations are abelian, and the abelianization of the symmetric group is C 2, the cyclic group of order 2. For all n, there is an n-dimensional representation of the symmetric group of order n!, called the natural permutation representation ...