Search results
Results from the WOW.Com Content Network
Greedy algorithms determine the minimum number of coins to give while making change. These are the steps most people would take to emulate a greedy algorithm to represent 36 cents using only coins with values {1, 5, 10, 20}. The coin of the highest value, less than the remaining change owed, is the local optimum.
Pages in category "Greedy algorithms" The following 9 pages are in this category, out of 9 total. This list may not reflect recent changes. A. A* search algorithm; B.
In computer science, greedy number partitioning is a class of greedy algorithms for multiway number partitioning. The input to the algorithm is a set S of numbers, and a parameter k. The required output is a partition of S into k subsets, such that the sums in the subsets are as nearly equal as possible. Greedy algorithms process the numbers ...
Typically, the standard graph coloring approaches produce quality code, but have a significant overhead, [27] [28] the used graph coloring algorithm having a quadratic cost. [29] Owing to this feature, linear scan is the approach currently used in several JIT compilers, like the Hotspot client compiler , V8 , Jikes RVM , [ 5 ] and the Android ...
Introduction to Algorithms is a book on computer programming by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The book is described by its publisher as "the leading algorithms text in universities worldwide as well as the standard reference for professionals". [ 1 ]
A basic problem regarding weighted matroids is to find an independent set with a maximum total weight. This problem can be solved using the following simple greedy algorithm: Initialize the set A to an empty set. Note that, by definition of a matroid, A is an independent set. For each element x in E\A, check whether Au{x} is still an ...
Longest-processing-time-first (LPT) is a greedy algorithm for job scheduling. The input to the algorithm is a set of jobs, each of which has a specific processing-time. There is also a number m specifying the number of machines that can process the jobs. The LPT algorithm works as follows:
A greedy algorithm is optimal for every R-compatible linear objective function over a greedoid. The intuition behind this proposition is that, during the iterative process, each optimal exchange of minimum weight is made possible by the exchange property, and optimal results are obtainable from the feasible sets in the underlying greedoid.