enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron affinity - Wikipedia

    en.wikipedia.org/wiki/Electron_affinity

    The electron affinity of molecules is a complicated function of their electronic structure. For instance the electron affinity for benzene is negative, as is that of naphthalene, while those of anthracene, phenanthrene and pyrene are positive. In silico experiments show that the electron affinity of hexacyanobenzene surpasses that of fullerene. [5]

  3. Electron affinity (data page) - Wikipedia

    en.wikipedia.org/wiki/Electron_affinity_(data_page)

    Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion.

  4. Periodic trends - Wikipedia

    en.wikipedia.org/wiki/Periodic_trends

    The energy released when an electron is added to a neutral gaseous atom to form an anion is known as electron affinity. [14] Trend-wise, as one progresses from left to right across a period , the electron affinity will increase as the nuclear charge increases and the atomic size decreases resulting in a more potent force of attraction of the ...

  5. Helium compounds - Wikipedia

    en.wikipedia.org/wiki/Helium_compounds

    The electron affinity is 0.080 eV, which is very close to zero. [2] The helium atom is small with the radius of the outer electron shell at 0.29 Å. [2] Helium is a very hard atom with a Pearson hardness of 12.3 eV. [3] It has the lowest polarizability of any kind of atom, however, very weak van der Waals forces exist between helium and other ...

  6. Fluorine - Wikipedia

    en.wikipedia.org/wiki/Fluorine

    Fluorine has a rich chemistry, encompassing organic and inorganic domains. It combines with metals, nonmetals, metalloids, and most noble gases. [97] Fluorine's high electron affinity results in a preference for ionic bonding; when it forms covalent bonds, these are polar, and almost always single. [98] [99] [note 10]

  7. Chemical affinity - Wikipedia

    en.wikipedia.org/wiki/Chemical_affinity

    In chemical physics and physical chemistry, chemical affinity is the electronic property by which dissimilar chemical species are capable of forming chemical compounds. [1] Chemical affinity can also refer to the tendency of an atom or compound to combine by chemical reaction with atoms or compounds of unlike composition.

  8. Goldschmidt classification - Wikipedia

    en.wikipedia.org/wiki/Goldschmidt_classification

    The Goldschmidt classification, [1] [2] developed by Victor Goldschmidt (1888–1947), is a geochemical classification which groups the chemical elements within the Earth according to their preferred host phases into lithophile (rock-loving), siderophile (iron-loving), chalcophile (sulfide ore-loving or chalcogen-loving), and atmophile (gas-loving) or volatile (the element, or a compound in ...

  9. Period 3 element - Wikipedia

    en.wikipedia.org/wiki/Period_3_element

    A period 3 element is one of the chemical elements in the third row (or period) of the periodic table of the chemical elements.The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behavior of the elements as their atomic number increases: a new row is begun when chemical behavior begins to repeat, meaning that elements with similar behavior fall into ...