Search results
Results from the WOW.Com Content Network
The XNOR gate (sometimes ENOR, EXNOR, NXOR, XAND and pronounced as Exclusive NOR) is a digital logic gate whose function is the logical complement of the Exclusive OR gate. [1] It is equivalent to the logical connective ( ↔ {\displaystyle \leftrightarrow } ) from mathematical logic , also known as the material biconditional.
if and only if, iff, xnor propositional logic, Boolean algebra: is true only if both A and B are false, or both A and B are true. Whether a symbol means a material biconditional or a logical equivalence, depends on the author’s style.
This explains why "EQ" is often called "XNOR" in the combinational logic of circuit engineers, since it is the negation of the XOR operation; "NXOR" is a less commonly used alternative. [1] Another rationalization of the admittedly circuitous name "XNOR" is that one begins with the "both false" operator NOR and then adds the eXception "or both ...
The symbol used for exclusive disjunction varies from one field of application to the next, and even depends on the properties being emphasized in a given context of discussion. In addition to the abbreviation "XOR", any of the following symbols may also be seen: + was used by George Boole in 1847. [6]
Venn diagram of (true part in red) In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement "if and only if" (often abbreviated as "iff " [1]), where is known as the antecedent, and the consequent.
XOR gate (sometimes EOR, or EXOR and pronounced as Exclusive OR) is a digital logic gate that gives a true (1 or HIGH) output when the number of true inputs is odd. An XOR gate implements an exclusive or from mathematical logic; that is, a true output results if one, and only one, of the inputs to the gate is true.
In logic and mathematics, statements and are said to be logically equivalent if they have the same truth value in every model. [1] The logical equivalence of and is sometimes expressed as , ::, , or , depending on the notation being used.
An XNOR gate is a basic comparator, because its output is "1" only if its two input bits are equal. The analog equivalent of digital comparator is the voltage comparator . Many microcontrollers have analog comparators on some of their inputs that can be read or trigger an interrupt .