enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Permutation group - Wikipedia

    en.wikipedia.org/wiki/Permutation_group

    A permutation group is a subgroup of a symmetric group; that is, its elements are permutations of a given set. It is thus a subset of a symmetric group that is closed under composition of permutations, contains the identity permutation, and contains the inverse permutation of each of its elements. [2]

  3. Symmetric group - Wikipedia

    en.wikipedia.org/wiki/Symmetric_group

    In the theory of Coxeter groups, the symmetric group is the Coxeter group of type A n and occurs as the Weyl group of the general linear group. In combinatorics, the symmetric groups, their elements (permutations), and their representations provide a rich source of problems involving Young tableaux, plactic monoids, and the Bruhat order.

  4. Representation theory of the symmetric group - Wikipedia

    en.wikipedia.org/wiki/Representation_theory_of...

    Every symmetric group has a one-dimensional representation called the trivial representation, where every element acts as the one by one identity matrix. For n ≥ 2 , there is another irreducible representation of degree 1, called the sign representation or alternating character , which takes a permutation to the one by one matrix with entry ...

  5. Permutation - Wikipedia

    en.wikipedia.org/wiki/Permutation

    The collection of all permutations of a set form a group called the symmetric group of the set. The group operation is the composition of functions (performing one rearrangement after the other), which results in another function (rearrangement).

  6. Group theory - Wikipedia

    en.wikipedia.org/wiki/Group_theory

    If X consists of n elements and G consists of all permutations, G is the symmetric group S n; in general, any permutation group G is a subgroup of the symmetric group of X. An early construction due to Cayley exhibited any group as a permutation group, acting on itself (X = G) by means of the left regular representation.

  7. Parity of a permutation - Wikipedia

    en.wikipedia.org/wiki/Parity_of_a_permutation

    The signature defines the alternating character of the symmetric group S n. Another notation for the sign of a permutation is given by the more general Levi-Civita symbol (ε σ), which is defined for all maps from X to X, and has value zero for non-bijective maps. The sign of a permutation can be explicitly expressed as sgn(σ) = (−1) N(σ)

  8. Cayley's theorem - Wikipedia

    en.wikipedia.org/wiki/Cayley's_theorem

    In group theory, Cayley's theorem, named in honour of Arthur Cayley, states that every group G is isomorphic to a subgroup of a symmetric group. [1] More specifically, G is isomorphic to a subgroup of the symmetric group ⁡ whose elements are the permutations of the underlying set of G.

  9. Group representation - Wikipedia

    en.wikipedia.org/wiki/Group_representation

    This condition and the axioms for a group imply that ρ(g) is a bijection (or permutation) for all g in G. Thus we may equivalently define a permutation representation to be a group homomorphism from G to the symmetric group S X of X. For more information on this topic see the article on group action.