Search results
Results from the WOW.Com Content Network
Alkenes having four or more carbon atoms can form diverse structural isomers. Most alkenes are also isomers of cycloalkanes. Acyclic alkene structural isomers with only one double bond follow: [6] C 2 H 4: ethylene only; C 3 H 6: propylene only; C 4 H 8: 3 isomers: 1-butene, 2-butene, and isobutylene
General overview of addition reactions. Top to bottom: electrophilic addition to alkene, nucleophilic addition of nucleophile to carbonyl and free-radical addition of halide to alkene. Depending on the product structure, it could promptly react further to eject a leaving group to give the addition–elimination reaction sequence.
The radicals formed from alkenyl peroxides can be utilized in organic radical reactions. For example, they can mediate hydrogen atom abstraction reactions and thus lead to the functionalization of C-H bonds, [7] or they can be used to introduce ketone residues by addition of the alkenyloxyl radicals to alkenes. [8] [9] [10]
There are two types of alpha-olefins, branched and linear (or normal). The chemical properties of branched alpha-olefins with a branch at either the second (vinylidene) or the third carbon number are significantly different from the properties of linear alpha-olefins and those with branches on the fourth carbon number and further from the start of the chain.
In organic chemistry, a rearrangement reaction is a broad class of organic reactions where the carbon skeleton of a molecule is rearranged to give a structural isomer of the original molecule. [1] Often a substituent moves from one atom to another atom in the same molecule, hence these reactions are usually intramolecular. In the example below ...
This is because the bond angle for an alkene, C-C=C, is 122°, while the bond angle for an alkane, C-C-C, is 112°. When these carbons form a small ring, the alkene which has a larger bond angle will have to compress more than the alkane causing more bond angle strain. [4] Cycloalkenes have a lower melting point than cycloalkanes of the same size.
Based on this trend, Zaytsev proposed that the alkene formed in greatest amount is that which corresponded to removal of the hydrogen from the alpha-carbon having the fewest hydrogen substituents. For example, when 2-iodobutane is treated with alcoholic potassium hydroxide (KOH), but-2-ene is the major product and but-1-ene is the minor product.
[citation needed] [8] The products produced in the reaction depend on the composition of the feed, the hydrocarbon-to-steam ratio, and on the cracking temperature and furnace residence time. Light hydrocarbon feeds such as ethane, LPGs or light naphtha give product streams rich in the lighter alkenes, including ethylene, propylene, and butadiene.