Search results
Results from the WOW.Com Content Network
The Golgi apparatus (/ ˈ ɡ ɒ l dʒ i /), also known as the Golgi complex, Golgi body, or simply the Golgi, is an organelle found in most eukaryotic cells. [1] Part of the endomembrane system in the cytoplasm , it packages proteins into membrane-bound vesicles inside the cell before the vesicles are sent to their destination.
Cellular compartments in cell biology comprise all of the closed parts within the cytosol of a eukaryotic cell, usually surrounded by a single or double lipid layer membrane. These compartments are often, but not always, defined as membrane-bound organelles. The formation of cellular compartments is called compartmentalization.
The Golgi apparatus (also known as the Golgi body and the Golgi complex) is composed of separate sacs called cisternae. Its shape is similar to a stack of pancakes. The number of these stacks varies with the specific function of the cell. The Golgi apparatus is used by the cell for further protein modification.
The Golgi apparatus plays a pivotal role in N-linked glycosylation, a process that begins in the ER and is elaborated within the Golgi. Through the sequential trimming and addition of sugars like GlcNAc, mannose, galactose, and sialic acid, the Golgi ensures that proteins are properly modified for their final functional roles.
Since the ER is the site of protein synthesis, it would serve as the parent organelle, and the cis face of the golgi, where proteins and signals are received, would be the acceptor. In order for the transport vesicle to accurately undergo a fusion event, it must first recognize the correct target membrane then fuse with that membrane.
Light micrograph of a moss's leaf cells at 400X magnification. The following outline is provided as an overview of and topical guide to cell biology: . Cell biology – A branch of biology that includes study of cells regarding their physiological properties, structure, and function; the organelles they contain; interactions with their environment; and their life cycle, division, and death.
Then the protein passes through the golgi apparatus, where it is packaged into a vesicle. In the vesicle, more parts are cut off, and it turns into mature insulin. In molecular biology, post-translational modification (PTM) is the covalent process of changing proteins following protein biosynthesis. PTMs may involve enzymes or occur spontaneously.
The polarity of the microtubules is important for cellular transport, as the motor proteins kinesin and dynein typically move preferentially in the "plus" and "minus" directions respectively, along a microtubule, allowing vesicles to be directed to or from the endoplasmic reticulum and Golgi apparatus. Particularly for the Golgi apparatus ...