Search results
Results from the WOW.Com Content Network
The following are the headers for Hilbert's 23 problems as they appeared in the 1902 translation in the Bulletin of the American Mathematical Society. [1] 1. Cantor's problem of the cardinal number of the continuum. 2. The compatibility of the arithmetical axioms. 3. The equality of the volumes of two tetrahedra of equal bases and equal altitudes.
Hilbert's seventeenth problem. Hilbert's seventeenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. It concerns the expression of positive definite rational functions as sums of quotients of squares. The original question may be reformulated as:
Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.
The first part of Hilbert's 16th problem. In 1876, Harnack investigated algebraic curves in the real projective plane and found that curves of degree n could have no more than. separate connected components. Furthermore, he showed how to construct curves that attained that upper bound, and thus that it was the best possible bound.
In mathematics, Hilbert's fourth problem in the 1900 list of Hilbert's problems is a foundational question in geometry.In one statement derived from the original, it was to find — up to an isomorphism — all geometries that have an axiomatic system of the classical geometry (Euclidean, hyperbolic and elliptic), with those axioms of congruence that involve the concept of the angle dropped ...
Hilbert's thirteenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. It entails proving whether a solution exists for all 7th-degree equations using algebraic (variant: continuous) functions of two arguments. It was first presented in the context of nomography, and in particular ...
Hilbert’s sixth problem was a proposal to expand the axiomatic method outside the existing mathematical disciplines, to physics and beyond. This expansion requires development of semantics of physics with formal analysis of the notion of physical reality that should be done. [9] Two fundamental theories capture the majority of the fundamental ...
Hilbert's nineteenth problem. Hilbert's nineteenth problem is one of the 23 Hilbert problems, set out in a list compiled by David Hilbert in 1900. [1] It asks whether the solutions of regular problems in the calculus of variations are always analytic. [2] Informally, and perhaps less directly, since Hilbert's concept of a " regular variational ...